Peculiarities of blood coagulation disorders in patients with COVID-19

封面

如何引用文章

全文:

详细

Aim. To study the relationship of hemostatic disorders with inflammation and estimate their role in the course and outcomes of COVID-19.

Materials and methods. We examined 215 consecutive patients with moderate and severe forms of acute COVID-19. The patients were on anticoagulants and immunosuppressive drugs. Hemostasis was assessed using the thrombodynamics assay, thromboelastography, fibrinogen and D-dimer levels, prothrombin time, and soluble fibrin-monomer complexes (ethanol gelation test). The hemostatic parameters were correlated with hematological and biochemical tests, including markers of inflammation (C-reactive protein, interleukins 6 and 8), as well as with the disease severity and outcomes.

Results. Laboratory signs of coagulopathy were revealed in the vast majority of the cases. Despite the use of low-molecular-weight heparins in the prophylactic and therapeutic doses, coagulopathy in COVID-19 manifested predominantly as hypercoagulability that correlated directly with the systemic inflammation and metabolic changes due to liver and kidney dysfunction. A direct relationship was found between the grade of coagulopathy and the severity of COVID-19, including comorbidities and the mortality. The chronometric hypocoagulability observed in about 1/4 cases was associated with a high level of C-reactive protein, which may decelerate coagulation in vitro and thereby mask the true inflammatory thrombophilia. Persistent hyperfibrinogenemia and high D-dimer in the absence of consumption coagulopathy suggest the predominance of local and/or regional microthrombosis over disseminated intravascular coagulation.

Conclusion. The results obtained substantiate the need for laboratory monitoring of hemostasis and active prophylaxis and treatment of thrombotic complications in COVID-19.

作者简介

Natalia Evtugina

Kazan Federal University

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-4950-3691

мл. науч. сотр.

俄罗斯联邦, Kazan

Svetlana Sannikova

City Hospital №16

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-0668-1877

врач

俄罗斯联邦, Kazan

Alina Peshkova

Kazan Federal University

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-8790-1818

канд. биол. наук, науч. сотр. Института фундаментальной медицины и биологии

俄罗斯联邦, Kazan

Svetlana Safiullina

Kazan Federal University; Medical Center “Aibolit”

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0003-4657-0140

канд. мед. наук, ст. науч. сотр. Института фундаментальной медицины и биологии, врач-гематолог

俄罗斯联邦, Kazan

Izabella Andrianova

Kazan Federal University

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0003-3973-3183

канд. биол. наук, науч. сотр. Института фундаментальной медицины и биологии

俄罗斯联邦, Kazan

Gulzada Tarasova

Kazan Federal University

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0003-3599-1599

врач клиники ФГАОУ ВО КФУ

俄罗斯联邦, Kazan

Alina Khabirova

Kazan Federal University

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-7243-8832

мл. науч. сотр. Института фундаментальной медицины и биологии

俄罗斯联邦, Kazan

Aleksandr Rumyantsev

Dmitry Rogachev National Medical Research Center of Pediatric Hematology

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-1643-5960

акад. РАН, д-р мед. наук, проф., президент ФГБУ «НМИЦ ДГОИ им. Дмитрия Рогачева»

俄罗斯联邦, Moscow

Fazoil Ataullakhanov

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Center for Theoretical Problems of Physico-Chemical Pharmacology

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-6668-0948

чл.-кор. РАН, д-р биол. наук, проф., науч. рук. ФГБУН ЦТП ФХФ РАН, зав. отд. биофизики и системной биологии и лабораторией биофизики ФГБУ «НМИЦ ДГОИ им. Дмитрия Рогачева

俄罗斯联邦, Moscow

Rustem Litvinov

Kazan Federal University

编辑信件的主要联系方式.
Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0003-0643-1496

д-р мед. наук, проф., гл. науч. сотр. Института фундаментальной медицины и биологии

俄罗斯联邦, Kazan

参考

  1. Tal S, Spectre G, Kornowski R, Perl L. Venous Thromboembolism Complicated with COVID-19: What Do We Know so Far? Acta Haematol. 2020;143(5):417-24. doi: 10.1159/000508233
  2. Лобастов К.В., Счастливцев И.В., Порембская О.Я., и др. COVID-19-ассоциированная коагулопатия: обзор современных рекомендаций по диагностике, лечению и профилактике. Амбулаторная хирургия. 2020;(3–4):36-51 [Lobastov KV, Schastlivtsev IV, Porembskaya OYa, et al. COVID-19-associated coagulopathy: review of current recommendations for diagnosis, treatment and prevention. Ambulatory surgery. 2020;(3–4):36-51 (in Russian)]. doi: 10.21518/1995-1477-2020-3-4-36-51
  3. Арутюнов Г.П., Козиолова Н.А., Тарловская Е.И., и др. Согласованная позиция экспертов Евразийской ассоциации терапевтов по некоторым новым механизмам патогенеза COVID-19: фокус на гемостаз, вопросы гемотрансфузии и систему транспорта газов крови. Кардиология. 2020;60(5):9-19 [Arutyunov GP, Koziolova NA, Tarlovskaya EI, et al. The Agreed Experts’ Position of the Eurasian Association of Therapists on Some new Mechanisms of COVID-19 Pathways: Focus on Hemostasis, Hemotransfusion Issues and Blood gas Exchange. Kardiologiia. 2020;60(5):9-19 (in Russian)]. doi: 10.18087/cardio.2020.5.n1132
  4. Явелов И.С., Драпкина О.М. COVID-19: состояние системы гемостаза и особенности антитромботической терапии. Кардиоваскулярная терапия и профилактика. 2020;19(3):2571 [Yavelov IS, Drapkina OM. COVID-19: hemostatic parameters and specifics of antithrombotic treatment. Cardiovascular therapy and prevention. 2020;19(3):2571 (in Russian)]. doi: 10.15829/1728-8800-2020-2571
  5. Paranjpe I, Fuster V, Lala A, et al. Association of Treatment Dose Anticoagulation With In-Hospital Survival Among Hospitalized Patients With COVID-19. J Am Coll Cardiol. 2020;76(1):122-4. doi: 10.1016/j.jacc.2020.05.001
  6. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-6. doi: 10.1111/jth.14810
  7. Сафиуллина С.И., Литвинов Р.И. Рекомендации по профилактике и коррекции тромботических осложнений при COVID-19. Казанский медицинский журнал. 2020;101(4):485-8 [Safiullina SI, Litvinov RI. Recommendations for the prevention and correction of thrombotic complications in COVID-19. Kazanskiy meditsinskiy zhurnal. 2020;101(4):485-8 (in Russian)]. doi: 10.17816/KMJ2020-485
  8. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Министерство здравоохранения РФ. Версия 9 (26.10.2020). Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/548/original/%D0%9C%D0%A0_COVID-19_%28v.9%29.pdf?1603730062. Ссылка активна на 18.11.2020 [Temporary guidelines. Prevention, diagnosis and treatment of the new coronavirus infection (COVID-19). Ministry of Health of the Russian Federation. Version 9 (26.10.2020). Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/548/original/%D0%9C%D0%A0_COVID-19_%28v.9%29.pdf?1603730062. Accessed: 18.11.2020 (in Russian)].
  9. Sinauridze EI, Vuimo TA, Tarandovskiy ID, et al. Thrombodynamics, a new global coagulation test: Measurement of heparin efficiency. Talanta. 2018;180:282-91. doi: 10.1016/j.talanta.2017.12.055
  10. Breen FA Jr, Tullis JL. Ethanol gelation test improved. Ann Intern Med. 1969;71(2):433-4. doi: 10.7326/0003-4819-71-2-433_2
  11. Bowles L, Platton S, Yartey N, et al. Lupus Anticoagulant and Abnormal Coagulation Tests in Patients with Covid-19. N Engl J Med. 2020;383(3):288-90. doi: 10.1056/nejmc2013656
  12. Van Rossum AP, Vlasveld LT, van den Hoven LJM, et al. False prolongation of the activated partial thromboplastin time (aPTT) in inflammatory patients: Interference of C-reactive protein. Br J Haematol. 2012;157(3):394-5. doi: 10.1111/j.1365-2141.2011.08990.x
  13. Thaker A, Chandler W. Prolongation of PTT by CRP Is Magnified in the Setting of Heparin and Warfarin Therapy. Am J Clin Pathol. 2016;147(Suppl. 2):S153. doi: 10.1093/ajcp/aqw191.004
  14. Devreese KMJ, Verfaillie CJ, De Bisschop F, Delanghe JR. Interference of C-reactive protein with clotting times. Clin Chem Lab Med. 2015;53(5):e141-5. doi: 10.1515/cclm-2014-0906
  15. Zlatko D. The Cytokines of the Immune System: The Role of Cytokines in Disease Related to Immune Response. Academic Press; 1st edition (June 16, 2015); 2015.
  16. Ulfman LH, Joosten DPH, van der Linden JAM, et al. IL-8 Induces a Transient Arrest of Rolling Eosinophils on Human Endothelial Cells. J Immunol. 2001;166(1):588-95. doi: 10.4049/jimmunol.166.1.588
  17. Erger RA, Casale TB. Interleukin-8 is a potent mediator of eosinophil chemotaxis through endothelium and epithelium. Am J Physiol. 1995;268(1 Pt. 1):L117-22. doi: 10.1152/ajplung.1995.268.1.L117
  18. Tuktamyshov R, Zhdanov R. The method of in vivo evaluation of hemostasis: Spatial thrombodynamics. Hematology. 2015;20(10):584-6. doi: 10.1179/1607845415Y.0000000022
  19. Balandina AN, Koltsova EM, Teterina TA, et al. An enhanced clot growth rate before in vitro fertilization decreases the probability of pregnancy. PLoS One. 2019;14(5):1-19. doi: 10.1371/journal.pone.0216724
  20. Balandina AN, Serebriyskiy II, Poletaev AV, et al. Thrombodynamics – A new global hemostasis assay for heparin monitoring in patients under the anticoagulant treatment. PLoS One. 2018;13(6):1-18. doi: 10.1371/journal.pone.0199900
  21. Bates S. D-dimer assays in diagnosis and management of thrombotic and bleeding disorders. Semin Thromb Hemost. 2012;38(7):673-82. doi: 10.1055/s-0032-1326782
  22. Borghi MO, Beltagy A, Garrafa E, et al. Anti-Phospholipid Antibodies in COVID-19 Are Different From Those Detectable in the Anti-Phospholipid Syndrome. Front Immunol. 2020;11:584241. doi: 10.3389/fimmu.2020.584241
  23. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: 10.1056/NEJMc2007575
  24. Dalal KS, Bridgeman MB. Cardiovascular drugs. Nursing (Lond). 2017;47(11):63. doi: 10.1097/01.nurse.0000524762.35753.23
  25. Близнюков О.П., Козмин Л.Д., Мартынов А.И., и др. С-реактивный белок удлиняет время свертывания крови. Научно-практическая ревматология. 2003;16-20 [Bliznyukov OP, Kozmin LD, Martynov AI, et al. C-reactive protein lengthens blood clotting time. Nauchno-prakticheskaya revmatologiya. 2003;16-20 (in Russian)]
  26. Wu W, Xie X, Yin W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5
  27. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747-51. doi: 10.1111/jth.14854
  28. Nasonov EL, Beketova TV, Reshetnyak TM, et al. Coronavirus disease 2019 (covid-19) and immune-mediated inflammatory rheumatic diseases: At the crossroads of thromboinflammation and autoimmunity. Nauchno-prakticheskaya revmatologiya. 2020;58(4):353-67. doi: 10.47360/1995-4484-2020-353-367
  29. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. doi: 10.1016/S0140-6736(20)30628-0
  30. Gu SX, Tyagi T, Jain K, et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol. 2020;2. doi: 10.1038/S41569-020-00469-1
  31. Sriram K, Insel PA. Inflammation and thrombosis in COVID-19 pathophysiology: Proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets. Physiol Rev. 2021;101(2):545-67. doi: 10.1152/physrev.00035.2020

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Parameters of thrombodynamics in COVID-19 patients (n=215) and healthy donors (n=20): a – clot density, b – the stationary clot growth rate, c – the initial clot growth rate, d – clot size, e – lag time. Hereinafter in tables 2, 3, 5: results are presented as a median and interquartile range (25 and 75th percentiles). *p<0.01; **p<0.001, Mann–Whitney U-test.

下载 (174KB)
3. Fig. 2. Characteristic thromboelastograms (TEGs) of a COVID-19 patient and a healthy donor, illustrating the decelerated clotting and an increase in the clot strength in the COVID-19 plasma sample.

下载 (74KB)

版权所有 © Consilium Medicum, 2021

Creative Commons License
此作品已接受知识共享署名-非商业性使用-相同方式共享 4.0国际许可协议的许可。
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».