Особенности нарушения системы свертывания крови у больных COVID-19

Обложка

Цитировать

Полный текст

Аннотация

Цель. Изучить связь гемостатических нарушений с воспалением и вклад коагулопатий в течение и исходы COVID-19.

Материалы и методы. Обследованы 215 пациентов со среднетяжелой и тяжелой формами болезни на фоне антикоагулянтной и иммуносупрессивной терапии. Гемостаз оценивали по тестам тромбодинамики, тромбоэластографии, уровням фибриногена и D-димера, протромбиновому времени и растворимым комплексам фибрин-мономера. Показатели гемостаза сопоставляли с гемограммой и биохимией крови, включая маркеры воспаления (С-реактивный белок, интерлейкины 6 и 8), а также с клинической картиной.

Результаты. Признаки коагулопатии выявлены у подавляющего большинства обследованных. Несмотря на применение низкомолекулярных гепаринов в профилактических и лечебных дозах, коагулопатия при COVID-19 протекает преимущественно по типу гипер- коагуляции, выраженность которой прямо коррелирует с системной воспалительной реакцией и метаболическими сдвигами вследствие дисфункции печени и почек. Обнаружена прямая связь между степенью гемостатических расстройств и тяжестью течения COVID-19, включая наличие сопутствующих заболеваний и вероятность неблагоприятного исхода. Примерно в 1/4 случаев обнаружена хронометрическая гипокоагуляция в сочетании с высоким уровнем С-реактивного белка в крови, который может тормозить свертывание in vitro и тем самым маскировать истинную тромбофилию при активном воспалении. Персистирующие высокие уровни фибриногена и D-димера при отсутствии признаков коагулопатии потребления свидетельствуют о преобладании локального и/или регионального микротромбоза над диффузным внутрисосудистым свертыванием крови.

Заключение. Полученные результаты обосновывают необходимость лабораторного контроля системы гемостаза и активной профилактики тромботических осложнений, включая ограничение системной воспалительной реакции, при COVID-19.

Об авторах

Наталья Геннадьевна Евтюгина

ФГАОУ ВО «Казанский (Приволжский) федеральный университет»

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-4950-3691

мл. науч. сотр.

Россия, Казань

Светлана Сергеевна Санникова

ГАУЗ «Городская клиническая больница №16»

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-0668-1877

врач

Россия, Казань

Алина Дмитриевна Пешкова

ФГАОУ ВО «Казанский (Приволжский) федеральный университет»

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-8790-1818

канд. биол. наук, науч. сотр. Института фундаментальной медицины и биологии

Россия, Казань

Светлана Ильдаровна Сафиуллина

ФГАОУ ВО «Казанский (Приволжский) федеральный университет»; Медицинский центр «Айболит»

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0003-4657-0140

канд. мед. наук, ст. науч. сотр. Института фундаментальной медицины и биологии, врач-гематолог

Россия, Казань

Изабелла Александровна Андрианова

ФГАОУ ВО «Казанский (Приволжский) федеральный университет»

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0003-3973-3183

канд. биол. наук, науч. сотр. Института фундаментальной медицины и биологии

Россия, Казань

Гульзада Рафаиловна Тарасова

ФГАОУ ВО «Казанский (Приволжский) федеральный университет»

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0003-3599-1599

врач клиники ФГАОУ ВО КФУ

Россия, Казань

Алина Ильшатовна Хабирова

ФГАОУ ВО «Казанский (Приволжский) федеральный университет»

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-7243-8832

мл. науч. сотр. Института фундаментальной медицины и биологии

Россия, Казань

Александр Григорьевич Румянцев

ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-1643-5960

акад. РАН, д-р мед. наук, проф., президент ФГБУ «НМИЦ ДГОИ им. Дмитрия Рогачева»

Россия, Москва

Фазоил Иноятович Атауллаханов

ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» Российской академии наук

Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0002-6668-0948

чл.-кор. РАН, д-р биол. наук, проф., науч. рук. ФГБУН ЦТП ФХФ РАН, зав. отд. биофизики и системной биологии и лабораторией биофизики ФГБУ «НМИЦ ДГОИ им. Дмитрия Рогачева

Россия, Москва

Рустем Игоревич Литвинов

ФГАОУ ВО «Казанский (Приволжский) федеральный университет»

Автор, ответственный за переписку.
Email: natalja.evtugyna@gmail.com
ORCID iD: 0000-0003-0643-1496

д-р мед. наук, проф., гл. науч. сотр. Института фундаментальной медицины и биологии

Россия, Казань

Список литературы

  1. Tal S, Spectre G, Kornowski R, Perl L. Venous Thromboembolism Complicated with COVID-19: What Do We Know so Far? Acta Haematol. 2020;143(5):417-24. doi: 10.1159/000508233
  2. Лобастов К.В., Счастливцев И.В., Порембская О.Я., и др. COVID-19-ассоциированная коагулопатия: обзор современных рекомендаций по диагностике, лечению и профилактике. Амбулаторная хирургия. 2020;(3–4):36-51 [Lobastov KV, Schastlivtsev IV, Porembskaya OYa, et al. COVID-19-associated coagulopathy: review of current recommendations for diagnosis, treatment and prevention. Ambulatory surgery. 2020;(3–4):36-51 (in Russian)]. doi: 10.21518/1995-1477-2020-3-4-36-51
  3. Арутюнов Г.П., Козиолова Н.А., Тарловская Е.И., и др. Согласованная позиция экспертов Евразийской ассоциации терапевтов по некоторым новым механизмам патогенеза COVID-19: фокус на гемостаз, вопросы гемотрансфузии и систему транспорта газов крови. Кардиология. 2020;60(5):9-19 [Arutyunov GP, Koziolova NA, Tarlovskaya EI, et al. The Agreed Experts’ Position of the Eurasian Association of Therapists on Some new Mechanisms of COVID-19 Pathways: Focus on Hemostasis, Hemotransfusion Issues and Blood gas Exchange. Kardiologiia. 2020;60(5):9-19 (in Russian)]. doi: 10.18087/cardio.2020.5.n1132
  4. Явелов И.С., Драпкина О.М. COVID-19: состояние системы гемостаза и особенности антитромботической терапии. Кардиоваскулярная терапия и профилактика. 2020;19(3):2571 [Yavelov IS, Drapkina OM. COVID-19: hemostatic parameters and specifics of antithrombotic treatment. Cardiovascular therapy and prevention. 2020;19(3):2571 (in Russian)]. doi: 10.15829/1728-8800-2020-2571
  5. Paranjpe I, Fuster V, Lala A, et al. Association of Treatment Dose Anticoagulation With In-Hospital Survival Among Hospitalized Patients With COVID-19. J Am Coll Cardiol. 2020;76(1):122-4. doi: 10.1016/j.jacc.2020.05.001
  6. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-6. doi: 10.1111/jth.14810
  7. Сафиуллина С.И., Литвинов Р.И. Рекомендации по профилактике и коррекции тромботических осложнений при COVID-19. Казанский медицинский журнал. 2020;101(4):485-8 [Safiullina SI, Litvinov RI. Recommendations for the prevention and correction of thrombotic complications in COVID-19. Kazanskiy meditsinskiy zhurnal. 2020;101(4):485-8 (in Russian)]. doi: 10.17816/KMJ2020-485
  8. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Министерство здравоохранения РФ. Версия 9 (26.10.2020). Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/548/original/%D0%9C%D0%A0_COVID-19_%28v.9%29.pdf?1603730062. Ссылка активна на 18.11.2020 [Temporary guidelines. Prevention, diagnosis and treatment of the new coronavirus infection (COVID-19). Ministry of Health of the Russian Federation. Version 9 (26.10.2020). Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/548/original/%D0%9C%D0%A0_COVID-19_%28v.9%29.pdf?1603730062. Accessed: 18.11.2020 (in Russian)].
  9. Sinauridze EI, Vuimo TA, Tarandovskiy ID, et al. Thrombodynamics, a new global coagulation test: Measurement of heparin efficiency. Talanta. 2018;180:282-91. doi: 10.1016/j.talanta.2017.12.055
  10. Breen FA Jr, Tullis JL. Ethanol gelation test improved. Ann Intern Med. 1969;71(2):433-4. doi: 10.7326/0003-4819-71-2-433_2
  11. Bowles L, Platton S, Yartey N, et al. Lupus Anticoagulant and Abnormal Coagulation Tests in Patients with Covid-19. N Engl J Med. 2020;383(3):288-90. doi: 10.1056/nejmc2013656
  12. Van Rossum AP, Vlasveld LT, van den Hoven LJM, et al. False prolongation of the activated partial thromboplastin time (aPTT) in inflammatory patients: Interference of C-reactive protein. Br J Haematol. 2012;157(3):394-5. doi: 10.1111/j.1365-2141.2011.08990.x
  13. Thaker A, Chandler W. Prolongation of PTT by CRP Is Magnified in the Setting of Heparin and Warfarin Therapy. Am J Clin Pathol. 2016;147(Suppl. 2):S153. doi: 10.1093/ajcp/aqw191.004
  14. Devreese KMJ, Verfaillie CJ, De Bisschop F, Delanghe JR. Interference of C-reactive protein with clotting times. Clin Chem Lab Med. 2015;53(5):e141-5. doi: 10.1515/cclm-2014-0906
  15. Zlatko D. The Cytokines of the Immune System: The Role of Cytokines in Disease Related to Immune Response. Academic Press; 1st edition (June 16, 2015); 2015.
  16. Ulfman LH, Joosten DPH, van der Linden JAM, et al. IL-8 Induces a Transient Arrest of Rolling Eosinophils on Human Endothelial Cells. J Immunol. 2001;166(1):588-95. doi: 10.4049/jimmunol.166.1.588
  17. Erger RA, Casale TB. Interleukin-8 is a potent mediator of eosinophil chemotaxis through endothelium and epithelium. Am J Physiol. 1995;268(1 Pt. 1):L117-22. doi: 10.1152/ajplung.1995.268.1.L117
  18. Tuktamyshov R, Zhdanov R. The method of in vivo evaluation of hemostasis: Spatial thrombodynamics. Hematology. 2015;20(10):584-6. doi: 10.1179/1607845415Y.0000000022
  19. Balandina AN, Koltsova EM, Teterina TA, et al. An enhanced clot growth rate before in vitro fertilization decreases the probability of pregnancy. PLoS One. 2019;14(5):1-19. doi: 10.1371/journal.pone.0216724
  20. Balandina AN, Serebriyskiy II, Poletaev AV, et al. Thrombodynamics – A new global hemostasis assay for heparin monitoring in patients under the anticoagulant treatment. PLoS One. 2018;13(6):1-18. doi: 10.1371/journal.pone.0199900
  21. Bates S. D-dimer assays in diagnosis and management of thrombotic and bleeding disorders. Semin Thromb Hemost. 2012;38(7):673-82. doi: 10.1055/s-0032-1326782
  22. Borghi MO, Beltagy A, Garrafa E, et al. Anti-Phospholipid Antibodies in COVID-19 Are Different From Those Detectable in the Anti-Phospholipid Syndrome. Front Immunol. 2020;11:584241. doi: 10.3389/fimmu.2020.584241
  23. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: 10.1056/NEJMc2007575
  24. Dalal KS, Bridgeman MB. Cardiovascular drugs. Nursing (Lond). 2017;47(11):63. doi: 10.1097/01.nurse.0000524762.35753.23
  25. Близнюков О.П., Козмин Л.Д., Мартынов А.И., и др. С-реактивный белок удлиняет время свертывания крови. Научно-практическая ревматология. 2003;16-20 [Bliznyukov OP, Kozmin LD, Martynov AI, et al. C-reactive protein lengthens blood clotting time. Nauchno-prakticheskaya revmatologiya. 2003;16-20 (in Russian)]
  26. Wu W, Xie X, Yin W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5
  27. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747-51. doi: 10.1111/jth.14854
  28. Nasonov EL, Beketova TV, Reshetnyak TM, et al. Coronavirus disease 2019 (covid-19) and immune-mediated inflammatory rheumatic diseases: At the crossroads of thromboinflammation and autoimmunity. Nauchno-prakticheskaya revmatologiya. 2020;58(4):353-67. doi: 10.47360/1995-4484-2020-353-367
  29. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. doi: 10.1016/S0140-6736(20)30628-0
  30. Gu SX, Tyagi T, Jain K, et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol. 2020;2. doi: 10.1038/S41569-020-00469-1
  31. Sriram K, Insel PA. Inflammation and thrombosis in COVID-19 pathophysiology: Proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets. Physiol Rev. 2021;101(2):545-67. doi: 10.1152/physrev.00035.2020

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Параметры тромбодинамики у пациентов с COVID-19 (n=215) и здоровых доноров (n=20): a – оптическая плотность сгустка роста сгустка, b – стационарная скорость, c – начальная скорость роста сгустка, d – размер сгустка, e – лаг-период. Здесь и далее в табл. 2, 3, 5: результаты представлены в виде медианы и ИКР (25; 75-й процентиль). *p<0,01; **p<0,001, критерий Манна–Уитни.

Скачать (174KB)
3. Рис. 2. Типичные тромбоэластограммы (ТЭГ) пациента с COVID-19 и здорового донора, иллюстрирующие замедление свертывания плазмы крови и увеличение прочности сгустка при COVID-19.

Скачать (74KB)

© ООО "Консилиум Медикум", 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах