The National Consensus statement on the management of adult patients with non-alcoholic fatty liver disease and main comorbidities

Cover Page

Cite item

Full Text

Abstract

The National Consensus was prepared with the participation of the National Medical Association for the Study of the Multimorbidity, Russian Scientific Liver Society, Russian Association of Endocrinologists, Russian Association of Gerontologists and Geriatricians, National Society for Preventive Cardiology, Professional Foundation for the Promotion of Medicine – Fund PROFMEDFORUM.

The aim of the multidisciplinary consensus is a detailed analysis of the course of non-alcoholic fatty liver disease (NAFLD) and the main associated conditions. The definition of NAFLD is given, its prevalence is described, methods for diagnosing its components such as steatosis, inflammation and fibrosis are described. The association of NAFLD with a number of cardio-metabolic diseases (arterial hypertension, atherosclerosis, thrombotic complications, type 2 diabetes mellitus, obesity, dyslipidemia, etc.), chronic kidney disease and the risk of developing hepatocellular cancer were analyzed. The review of non-drug methods of treatment of NAFLD and modern opportunities of pharmacotherapy are presented. The possibilities of new molecules in the treatment of NAFLD are considered: agonists of nuclear receptors, antagonists of pro-inflammatory molecules, etc. The positive properties and disadvantages of currently used drugs (vitamin E, thiazolidinediones, etc.) are described. Special attention is paid to the multi-target ursodeoxycholic acid molecule in the complex treatment of NAFLD as a multifactorial disease. Its anti-inflammatory, anti-oxidant and cytoprotective properties, the ability to reduce steatosis – an independent risk factor for the development of cardiovascular pathology, reduce inflammation and hepatic fibrosis through the modulation of autophagy are considered. The ability of ursodeoxycholic acid to influence glucose and lipid homeostasis and to have an anticarcinogenic effect has been demonstrated. The Consensus statement has advanced provisions for practitioners to optimize the diagnosis and treatment of NAFLD and related common pathogenetic links of cardio-metabolic diseases.

About the authors

Marina V. Maevskaya

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: liver.orc@mail.ru
ORCID iD: 0000-0001-8913-140X
Scopus Author ID: 6504258180

д-р мед. наук, проф., врач-гастроэнтеролог

Russian Federation, Moscow

Yulia V. Kotovskaya

Russian Clinical and Research Center of Gerontology of Pirogov Russian National Research Medical University

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-1628-5093

д-р мед. наук, проф., зам. дир. по научной работе            

Russian Federation, Moscow

Vladimir T. Ivashkin

Sechenov First Moscow State Medical University (Sechenov University)

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-6815-6015

акад. РАН, д-р мед. наук, проф., зав. каф. пропедевтики внутренних болезней лечебного фак-та, дир. клиники пропедевтики внутренних болезней, гастроэнтерологии, гепатологии, гл. внештатный специалист-гастроэнтеролог

Russian Federation, Moscow

Olga N. Tkacheva

Russian Clinical and Research Center of Gerontology of Pirogov Russian National Research Medical University

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-4193-688X

д-р мед. наук, проф., дир., гл. внештатный специалист-гериатр Минздрава России

Russian Federation, Moscow

Ekaterina A. Troshina

Endocrinology Research Centre

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-8520-8702

д-р мед. наук, проф., чл.-кор. РАН, зам. дир.

Russian Federation, Moscow

Marina V. Shestakova

Endocrinology Research Centre

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-5057-127X

акад. РАН, д-р мед. наук, проф., зам. дир.

Russian Federation, Moscow

Valeriy V. Breder

Blokhin National Medical Research Center of Oncology

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-6244-4294

д-р мед. наук, вед. научный сотр.

Russian Federation, Moscow

Natalia I. Geyvandova

Stavropol State Medical University

Email: liver.orc@mail.ru
ORCID iD: 0000-0001-5920-5703

д-р мед. наук, проф. каф. госпитальной терапии

Russian Federation, Stavropol

Vladimir L. Doshchitsin

Pirogov Russian National Research Medical University

Email: liver.orc@mail.ru
ORCID iD: 0000-0001-8874-4108

д-р мед. наук, проф., каф. кардиологии

Russian Federation, Moscow

Ekaterina N. Dudinskaya

Russian Clinical and Research Center of Gerontology of Pirogov Russian National Research Medical University

Email: liver.orc@mail.ru
ORCID iD: 0000-0001-7891-6850

канд. мед. наук, зав. лаб. возрастных метаболических эндокринных нарушений

Russian Federation, Moscow

Ekaterina V. Ershova

Endocrinology Research Centre

Email: yu99pol06@rambler.ru
ORCID iD: 0000-0002-6220-4397

канд. мед. наук, вед. науч. сотр. отд. терапевтической эндокринологии

Russian Federation, Moscow

Khava B. Kodzoeva

Sechenov First Moscow State Medical University (Sechenov University)

Email: liver.orc@mail.ru
ORCID iD: 0000-0001-7510-6553

аспирант каф. пропедевтики внутренних болезней, гастроэнтерологии и гепатологии

Russian Federation, Moscow

Ksenia A. Komshilova

Endocrinology Research Centre

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-6624-2374

канд. мед. наук, врач-эндокринолог отд. терапевтической эндокринологии

Russian Federation, Moscow

Natalia V. Korochanskaya

Kuban State Medical University

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-5538-9418

д-р мед. наук, проф. каф. хирургии, гл. гастроэнтеролог Минздрава Краснодарского края

Russian Federation, Krasnodar

Alexander Yu. Mayorov

Endocrinology Research Centre

Email: liver.orc@mail.ru
ORCID iD: 0000-0001-5825-3287

д-р мед. наук, зав. отд. прогнозирования и инноваций диабета, проф. каф. диабетологии и диетологии

Russian Federation, Moscow

Ekaterina E. Mishina

Endocrinology Research Centre

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-5371-8708

науч. сотр. отд. прогнозирования и инноваций диабета

Russian Federation, Moscow

Maria Yu. Nadinskaya

Sechenov First Moscow State Medical University (Sechenov University)

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-1210-2528

канд. мед. наук, доц. каф. пропедевтики внутренних болезней, гастроэнтерологии и гепатологии

Russian Federation, Moscow

Igor G. Nikitin

Pirogov Russian National Research Medical University; National Medical Research Center "Treatment and Rehabilitation Center"

Email: liver.orc@mail.ru
ORCID iD: 0000-0003-1699-0881

д-р мед. наук, проф., зав. каф. госпитальной терапии

Russian Federation, Moscow; Moscow

Nana V. Pogosova

National Medical Research Center of Cardiology

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-4165-804X

д-р мед. наук, проф., зам. ген. дир. по научно-аналитической работе и профилактической кардиологии

Russian Federation, Moscow

Aida I. Tarzimanova

Sechenov First Moscow State Medical University (Sechenov University)

Email: liver.orc@mail.ru
ORCID iD: 0000-0001-9536-8307

д-р мед. наук, проф. каф. факультетской терапии

Russian Federation, Moscow

Minara Sh. Shamkhalova

Endocrinology Research Centre

Email: liver.orc@mail.ru
ORCID iD: 0000-0002-3433-0142

д-р мед. наук, зав. отд-нием диабетической болезни почек и посттрансплантационной реабилитации

Russian Federation, Moscow

References

  1. Kleiner DE, Makhlouf HR. Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children. Clin Liver Dis. 2016;20(2):293-312.
  2. Jichitu A, Bungau S, Stanescu AMA, et al. Non-Alcoholic Fatty Liver Disease and Cardiovascular Comorbidities: Pathophysiological Links, Diagnosis, and Therapeutic Management. Diagnostics (Basel). 2021;11(4):689. doi: 10.3390/diagnostics11040689
  3. Ивашкин В.Т., Маевская М.В., Павлов Ч.С., и др. Клинические рекомендации по диагностике и лечению неалкогольной жировой болезни печени Российского общества по изучению печени и Российской гастроэнтерологической ассоциации. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2016;26(2):24-42 [Ivashkin VT, Mayevskaya MV, Pavlov ChS, et al. Clinical guidelines for the diagnosis and treatment of non-alcoholic fatty liver disease of the Russian Society for the Study of the Liver and the Russian Gastroenterological Association. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2016;26(2):24-42 (in Russian)]. doi: 10.22416/1382-4376-2016-26-2-24-42
  4. Шархун О.О. Формирование кардиометаболических нарушений при НАЖБП, ассоциированной с инсулинорезистентностью. Автореф. дис. ... д-ра мед наук. М., 2019 [Sharkhun OO. Formation of cardiometabolic disorders in NAFLD associated with insulin resistance.Abstract of the dissertation for the degree of Doctor of Medical Sciences.Moscow, 2019 (in Russian)].
  5. Комова А.Г., Маевская М.В., Ивашкин В.Т. Принципы эффективной диагностики диффузных заболеваний печени на амбулаторном этапе. Рос. журн. гастроэнтерологии, гепатологии, колопроктологии. 2014;24(5):36-41 [Komova AG, Mayevskaya MV, Ivashkin VT. Principles of effective diagnosis of diffuse liver diseases at the outpatient stage. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2014;24(5):36-41 (in Russian)].
  6. Povsic M, Wong OY, Perry R, Bottomley J. A Structured Literature Review of the Epidemiology and Disease Burden of Non-Alcoholic Steatohepatitis (NASH). Adv Ther. 2019;36(7):1574-94. doi: 10.1007/s12325-019-00960-3
  7. Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol. 2018;69(4):896-904. doi: 10.1016/j.jhep.2018.05.036
  8. Day CP, James OF. Steatohepatitis: a tale of two ‘hits’? Gastroenterology. 1998;114:842-5.
  9. Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol. 2015;62(1S):S47-S64.
  10. Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: from “two hit theory” to “multiple hit model”. World J Gastroenterol. 2018;24:2974-83.
  11. Xian YX, Weng JP, Xu F. MAFLD vs. NAFLD: shared features and potential changes in epidemiology, pathophysiology, diagnosis, and pharmacotherapy. Chin Med J. 2021;134:8-19.
  12. Parthasarathy G, Revelo X, Malhi H. Pathogenesis of Nonalcoholic Steatohepatitis: An Overview. Hepatology Communications. 2020;4(4):478-92.
  13. Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu Rev Physiol. 2016;78:181-205.
  14. Friedman J. Leptin at 20: an overview. J Endocrinol. 2014;223:1-T8.
  15. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126:12-22.
  16. Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75:3313-27.
  17. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146:726-35.
  18. Ter Horst KW, Serlie MJ. Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients. 2017;9:E981.
  19. Basaranoglu M, Basaranoglu G, Bugianesi E. Carbohydrate intake and nonalcoholic fatty liver disease: Fructose as a weapon of mass destruction. Hepatobiliary Surg Nutr. 2015;4:109-16. doi: 10.3978/j.issn.2304-3881.2014.11.05
  20. Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018; 68:1063-75.
  21. Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59:713-23.
  22. Ghorpade DS, Ozcan L, Zheng Z, et al. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature. 2018;555:673-77.
  23. Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol. 2014;20:1746-55.
  24. Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28:360-9.
  25. Musso G, Cassader M, Paschetta E, Gambino R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology. 2018;155:282-302.e288.
  26. Parry SA, Rosqvist F, Mozes FE, et al. Intrahepatic fat and postprandial glycemia increase after consumption of a diet enriched in saturated fat compared with free sugars. Diabetes Care. 2020;43:1134-41.
  27. Драпкина О.М., Буеверов А.О. Неалкогольная жировая болезнь как мультидисциплинарная патология. М.: Видокс, 2019 [Drapkina OM, Bueverov AO. Nonalcoholic fatty disease as a multidisciplinary pathology. Moscow: Vidox, 2019 (in Russian)].
  28. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038-48.
  29. Шифф Ю.Р., Соррел М.Ф., Мэддрей У.С. Алкогольные, лекарственные, генетические и метаболические заболевания; пер. с англ. М.: ГЭОТАР-Медиа, 2011 [Schiff YR, Sorrell MF, Maddray WS. Alcoholic, medicinal, genetic and metabolic diseases. Moscow: GEOTAR-Media, 2011 (in Russian)].
  30. Sasaki A, Nitta H, Otsuka K, et al. Bariatric surgery and non-alcoholic fatty liver disease: current and potential future treatments. Front Endocrinol. 2014;5:164.
  31. Shen J, Sakaida I, Uchida K, et al. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci. 2005;77:1502-15.
  32. Subichin M, Clanton J, Makuszewski M, et al. Liver disease in the morbidly obese: a review of 1000 consecutive patients undergoing weight loss surgery. Surg Obes Relat Dis. 2015;11:137-41.
  33. Stanton MC, Chen S-C, Jackson JV, et al. Inflammatory signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. J Inflamm (Lond). 2011;8:8.
  34. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochim Biophys Acta. 2010;1801:338-49.
  35. Stojsavljevic S, Gomercic Palcic M, Virovic Jukic L, et al. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:18070-91.
  36. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18:363-74.
  37. Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018;68:280-95.
  38. Di Maira G, Pastore M, Marra F. Liver fibrosis in the context of nonalcoholic steatohepatitis: the role of adipokines. Minerva Gastroenterol Dietol. 2018;64:39-50. doi: 10.23736/S1121-421X.17.02427-8
  39. Remmerie A, Martens L, Scott CL. Macrophage subsets in obesity, aligning the liver and adipose tissue. Front Endocrinol (Lausanne). 2020;11:259.
  40. Machado MV, Cortez-Pinto H. Gut microbiota and nonalcoholic fatty liver disease. Ann Hepatol. 2012;11(4): 440-9.
  41. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10:330-44.
  42. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10:753-66.
  43. Lotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. 2007;220:60-81.
  44. Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol. 2012;57:642-54.
  45. Luedde T, Schwabe RF. NF-κB in the liver – linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8:108-18.
  46. Klein I, Cornejo JC, Polakos NK, et al. Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood. 2007;110:4077-85.
  47. Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006;55:415-24.
  48. Kremer M, Hines IN, Milton RJ, Wheeler MD. Favored T helper 1 response in a mouse model of hepatosteatosis is associated with enhanced T cell-mediated hepatitis. Hepatology. 2006;44:216-27.
  49. Ghazarian M, Revelo XS, Nohr MK, et al. Type I interferon responses drive intrahepatic T cells to promote metabolic syndrome. Sci Immunol. 2017;2:7616.
  50. Плотникова Е.Ю., Грачева Т.Ю., Ержанова Е.А. Роль кишечной микрофлоры в формировании неалкогольной жировой болезни печени. Лечащий врач. 2017;2:32-8 [Plotnikova EYu, Gracheva TYu, Yerzhanova EA. The role of intestinal microflora in the formation of non-alcoholic fatty liver disease. The Attending Physician. 2017;2:32-8 (in Russian)].
  51. Poeta M, Pierri L, Vajro P. Gut-Liver Axis Derangement in Non-Alcoholic Fatty Liver Disease. Children (Basel). 2017;4:66.
  52. Paolella G, Mandato C, Pierri L, et al. Gut-liver axis and probiotics: their role in non-alcoholic fatty liver disease. World J Gastroenterol. 2014;20:15518-31.
  53. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009;25:221-51.
  54. Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA. 2006;103:1006-11.
  55. Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113:1408-18.
  56. Parseus A, Sommer N, Sommer F, et al. Microbiota-induced obesity requires farnesoid X receptor. Gut. 2017;66:429-37.
  57. Van Nierop FS, Scheltema MJ, Eggink HM, et al. Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol. 2017;5:224-33.
  58. Amir M, Czaja MJ. Autophagy in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol. 2011;5(2):159-66.
  59. Wu P, Zhao J, Guo Y, et al. Ursodeoxycholic acid alleviates nonalcoholic fatty liver disease by inhibiting apoptosis and improving autophagy via activating AMPK. Biochem Biophys Res Commun. 2020;27;529(3):834-8.
  60. Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol. 2017;35:119-47.
  61. Nevo S, Kadouri N, Abramson J. Tuft cells: From the mucosa to the thymus. Immunol Lett. 2019;210:1-9.
  62. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799-809.
  63. Van Itallie CM, Holmes J, Bridges A, et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci. 2008;121:298-305.
  64. Clemente MG, Mandato C, Poeta M, Vajro P. Pediatric non-alcoholic fatty liver disease: Recent solutions, unresolved issues, and future research directions. World J Gastroenterol. 2016;22:8078-93.
  65. Ulluwishewa D, Anderson RC, McNabb WC, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141:769-76.
  66. Kapil S, Duseja A, Sharma BK, et al. Small intestinal bacterial overgrowth and toll-like receptor signaling in patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2016;31:213-21.
  67. Ахмедов В.А., Меликов Т.И. Генетические аспекты формирования неалкогольной жировой болезни печени. Лечащий врач. 2019;8:28-31 [Akhmedov VA, Melikov TI. Genetic aspects of the formation of non-alcoholic fatty liver disease. The Attending Physician. 2019;8:28-31 (in Russian)].
  68. Al-Serri A, Anstee QM, Valenti L, et al. The sod2 c47t polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studie. J Hepatol. 2011;56(2):448-54.
  69. Dongiovanni P, Romeo S, Valenti L. Genetic Factors in the Pathogenesis of Nonalcoholic Fatty Liver and Steatohepatitis. BioMed Research International. 2015;460190:10.
  70. Petersen KF, Dufour S, Hariri A, et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med. 2010;362(12):1082-89.
  71. Sazci A, Akpinar G, Aygun C, et al. Association of apolipoprotein E polymorphisms in patients with non-alcoholic steatohepatitis. Dig Dis Sci. 2008;53:3218-24.
  72. BasuRay S, Wang Y, Smagris E, et al. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci USA. 2019;116:9521-26.
  73. Kotronen A, Johansson LE, Johansson LM, et al. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia. 2009;52:1056-60.
  74. Kawaguchi T, Sumida Y, Umemura A, et al. Japan Study Group of Nonalcoholic Fatty Liver, Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS One. 2012;7:e38322.
  75. Zain SM, Mohamed R, Mahadeva S, et al. A multi-ethnic study of a PNPLA3 gene variant and its association with disease severity in non-alcoholic fatty liver disease. Hum Genet. 2012;131(7):1145-52.
  76. Takeuchi Y, Ikeda F, Moritou Y, et al. The impact of patatin-like phospholipase domaincontaining protein 3 polymorphism on hepatocellular carcinoma prognosis. J Gastroenterol. 2012;48(3):405-12.
  77. Musso G, Gambino R, De Michiel F, et al. Adiponectin gene polymorphisms modulate acute adiponectin response to dietary fat: possible pathogenetic role in NASH. Hepatology. 2008;47:1167-77.
  78. Li X-L, Sui J-Q, Lu L-L, et al. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: a concise review. Lipids Health Dis. 2016;15:53.
  79. Zhang C, Guo L, Guo X. Interaction of polymorphisms of Leptin receptor gene Gln223Arg, MnSOD9Ala/Val genes and smoking in nonalcoholic fatty liver disease. Wei Sheng Yan Jiu. 2014;43(5):724-31.
  80. Fedchuk L, Nascimbeni F, Pais R, et al. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2014;40:1209-22.
  81. Bril F, Ortiz-Lopez C, Lomonaco R, et al. Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients. Liver Internat. 2015;35:2139-46.
  82. Petroff D, Blank V, Newsome PN, et al. Assessment of hepatic steatosis by controlled attenuation parameter using the M and XL probes: an individual patient data meta-analysis. Lancet Gastroenterol Hepatol. 2021;6(3):185-98. doi: 10.1016/S2468-1253(20)30357-5
  83. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis – 2021 update. J Hepatol. 2021;75(3):659-89. doi: 10.1016/j.jhep.2021.05.025
  84. Staufer K, Halilbasic E, Spindelboeck W, et al. Evaluation and comparison of six noninvasive tests for prediction of significant or advanced fibrosis in nonalcoholic fatty liver disease. United European Gastroenterol J. 2019;7(8):1113-23. doi: 10.1177/2050640619865133
  85. Xiao G, Zhu S, Xiao X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepаtology. 2017;66:1486-501.
  86. Papatheodoridi M, Hiriart JB, Lupsor-Platon M, et al. Refining the Baveno VI elastography criteria for the definition of compensated advanced chronic liver disease. J Hepatol. 2021;74(5):1109-16. doi: 10.1016/j.jhep.2020.11.050
  87. Simeone JC, Bae JP, Hoogwerf BJ, et al. Clinical course of nonalcoholic fatty liver disease: an assessment of severity, progression, and outcomes. Clin Epidemiol. 2017;9:679-88. doi: 10.2147/CLEP.S144368
  88. Маевская М.В., Надинская М.Ю., Луньков В.Д., и др. Влияние урсодезоксихолевой кислоты на воспаление, стеатоз и фиброз печени и факторы атерогенеза у больных неалкогольной жировой болезнью печени: результаты исследования УСПЕХ. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(6):22-9 [Mayevskaya MV, Nadinskaya MYu, Lunkov VD, et al. The effect of ursodeoxycholic acid on inflammation, steatosis and fibrosis of the liver and factors of atherogenesis in patients with non-alcoholic fatty liver disease: the results of the study SUCCESS. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(6):22-9 (in Russian)]. doi: 10.22416/1382-4376-2019-29-6-22-29
  89. Streba LA, Vere CC, Rogoveanu I, Streba CT. Nonalcoholic fatty liver disease, metabolic risk factors, and hepatocellular carcinoma: an open question. World J Gastroenterol. 2015;21(14):4103-10. doi: 10.3748/wjg.v21.i14.4103
  90. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology. 2015;149(2):367-78. doi: 10.1053/j.gastro.2015.04.005
  91. Koutoukidis DA, Astbury NM, Tudor KE, et al. Association of Weight Loss Interventions With Changes in Biomarkers of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. JAMA Intern Med. 2019;179(9):1262-71. doi: 10.1001/jamainternmed.2019.2248. Erratum in: JAMA Intern Med. 2019;179(9):1303-04.
  92. Keating SE, Hackett DA, George J, Johnson NA. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;57(1):157-66. doi: 10.1016/j.jhep.2012.02.023
  93. Cheng S, Ge J, Zhao C, et al. Effect of aerobic exercise and diet on liver fat in pre-diabetic patients with non-alcoholic-fatty-liver-disease: A randomized controlled trial. Sci Rep. 2017;7(1):15952. doi: 10.1038/s41598-017-16159-x
  94. Hallsworth K, Thoma C, Hollingsworth KG, et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci (Lond). 2015;129(12):1097-105. doi: 10.1042/CS20150308
  95. Hashida R, Kawaguchi T, Bekki M, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. J Hepatol. 2017;66(1):142-52. doi: 10.1016/j.jhep.2016.08.023
  96. Katsagoni CN, Georgoulis M, Papatheodoridis GV, et al. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: A meta-analysis. Metabolism. 2017;68:119-32. doi: 10.1016/j.metabol.2016.12.006
  97. Golabi P, Locklear CT, Austin P, et al. Effectiveness of exercise in hepatic fat mobilization in non-alcoholic fatty liver disease: Systematic review. World J Gastroenterol. 2016;22(27):6318-27. doi: 10.3748/wjg.v22.i27.6318
  98. Smart NA, King N, McFarlane JR, et al. Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: a systematic review and meta-analysis. Br J Sports Med. 2018;52(13):834-43. doi: 10.1136/bjsports-2016-096197
  99. Rector RS, Thyfault JP, Morris RT, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol. 2008;294(3):G619-26. doi: 10.1152/ajpgi.00428.2007
  100. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388-402. doi: 10.1016/j.jhep.2015.11.004
  101. Ryan MC, Itsiopoulos C, Thodis T, et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol. 2013;59(1):138-43. doi: 10.1016/j.jhep.2013.02.012
  102. Kontogianni MD, Tileli N, Margariti A, et al. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin Nutr. 2014;33(4):678-83. doi: 10.1016/j.clnu.2013.08.014
  103. Saeed N, Nadeau B, Shannon C, Tincopa M. Evaluation of Dietary Approaches for the Treatment of Non-Alcoholic Fatty Liver Disease: A Systematic Review. Nutrients. 2019;11(12):3064. doi: 10.3390/nu11123064
  104. Moosavian SP, Arab A, Paknahad Z. The effect of a Mediterranean diet on metabolic parameters in patients with non-alcoholic fatty liver disease: A systematic review of randomized controlled trials. Clin Nutr ESPEN. 2020;35:40-6. doi: 10.1016/j.clnesp.2019.10.008
  105. Tendler D, Lin S, Yancy WS Jr, et al. The effect of a low-carbohydrate, ketogenic diet on nonalcoholic fatty liver disease: a pilot study. Dig Dis Sci. 2007;52(2):589-93. doi: 10.1007/s10620-006-9433-5
  106. Wong VW, Wong GL, Chan RS, et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J Hepatol. 2018;69(6):1349-56. doi: 10.1016/j.jhep.2018.08.011
  107. Francque SM, Marchesini G, Kautz A, et al. Non-alcoholic fatty liver disease: A patient guideline. JHEP Rep. 2021;3(5):100322. doi: 10.1016/j.jhepr.2021.100322
  108. Xia Y, Zhang S, Zhang Q, et al. Insoluble dietary fibre intake is associated with lower prevalence of newly-diagnosed non-alcoholic fatty liver disease in Chinese men: a large population-based cross-sectional study. Nutr Metab (Lond). 2020;17:4. doi: 10.1186/s12986-019-0420-1
  109. Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151-56. doi: 10.1126/science.aao5774
  110. Kenneally S, Sier JH, Moore JB. Efficacy of dietary and physical activity intervention in non-alcoholic fatty liver disease: a systematic review. BMJ Open Gastroenterol. 2017;4(1):e000139. doi: 10.1136/bmjgast-2017-000139
  111. Parry SA, Hodson L. Managing NAFLD in Type 2 Diabetes: The Effect of Lifestyle Interventions, a Narrative Review. Adv Ther. 2020;37(4):1381-406. doi: 10.1007/s12325-020-01281-6
  112. Lemstra M, Bird Y, Nwankwo C, et al. Weight loss intervention adherence and factors promoting adherence: a meta-analysis. Patient Prefer Adherence. 2016;10:1547-59. doi: 10.2147/PPA.S103649
  113. Scragg J, Hallsworth K, Taylor G, et al Factors associated with engagement and adherence to a low-energy diet to promote 10% weight loss in patients with clinically significant non-alcoholic fatty liver disease. BMJ Open Gastroenterol. 2021;8:e000678. doi: 10.1136/bmjgast-2021-000678
  114. Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2015;149(2):389-97.e10. doi: 10.1053/j.gastro.2015.04.043
  115. Polyzos SA, Kang ES, Boutari C, et al. Current and emerging pharmacological options for the treatment of nonalcoholic steatohepatitis. Metabolism. 2020;111S:154203. doi: 10.1016/j.metabol.2020.154203
  116. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675-85. doi: 10.1056/NEJMoa0907929
  117. Cusi K, Orsak B, Bril F, et al. Long-Term Pioglitazone Treatment for Patients With Nonalcoholic Steatohepatitis and Prediabetes or Type 2 Diabetes Mellitus: A Randomized Trial. Ann Intern Med. 2016;165(5):305-15. doi: 10.7326/M15-1774
  118. Musso G, Cassader M, Paschetta E, Gambino R. Thiazolidinediones and Advanced Liver Fibrosis in Nonalcoholic Steatohepatitis: A Meta-analysis. JAMA Intern Med. 2017;177(5):633-40. doi: 10.1001/jamainternmed.2016.9607
  119. Budd J, Cusi K. Role of Agents for the Treatment of Diabetes in the Management of Nonalcoholic Fatty Liver Disease. Curr Diab Rep. 2020;20(11):59. doi: 10.1007/s11892-020-01349-1
  120. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328-57. doi: 10.1002/hep.29367
  121. Ando Y, Jou JH. Nonalcoholic Fatty Liver Disease and Recent Guideline Updates. Clin Liver Dis (Hoboken). 2021;17(1):23-8. doi: 10.1002/cld.1045. PMID: 33552482; PMCID: PMC7849298.
  122. Bril F, Biernacki DM, Kalavalapalli S, et al. Role of Vitamin E for Nonalcoholic Steatohepatitis in Patients With Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care. 2019;42(8):1481-88. doi: 10.2337/dc19-0167
  123. Miller ER 3rd, Pastor-Barriuso R, Dalal D, et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142(1):37-46. doi: 10.7326/0003-4819-142-1-200501040-00110
  124. Abner EL, Schmitt FA, Mendiondo MS, et al. Vitamin E and all-cause mortality: a meta-analysis. Curr Aging Sci. 2011;4(2):158-70. doi: 10.2174/1874609811104020158
  125. Dufour JF, Oneta CM, Gonvers JJ, et al. Swiss Association for the Study of the Liver. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin e in nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2006;4(12):1537-43. doi: 10.1016/j.cgh.2006.09.025
  126. Ratziu V, de Ledinghen V, Oberti F, et al. FRESGUN. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepatol. 2011;54(5):1011-9. doi: 10.1016/j.jhep.2010.08.030
  127. Simental-Mendía LE, Simental-Mendía M, Sánchez-García A, et al. Impact of ursodeoxycholic acid on circulating lipid concentrations: a systematic review and meta-analysis of randomized placebo-controlled trials. Lipids Health Dis. 2019;18(1):88. doi: 10.1186/s12944-019-1041-4
  128. Maton PN, Ellis HJ, Higgins MJ, Dowling RH. Hepatic HMGCoA reductase in human cholelithiasis: effects of chenodeoxycholic and ursodeoxycholic acids. Eur J Clin Invest. 1980;10(4):325-32. doi: 10.1111/j.1365-2362.1980.tb00040.x
  129. Salen G, Colalillo A, Verga D, et al. Effect of high and low doses of ursodeoxycholic acid on gallstone dissolution in humans. Gastroenterology. 1980;78(6):1412-8.
  130. Ponz de Leon M, Carulli N, Loria P, et al. Cholesterol absorption during bile acid feeding. Effect of ursodeoxycholic acid (UDCA) administration. Gastroenterology. 1980;78(2):214-9.
  131. Марцевич С.Ю., Кутишенко Н.П., Дроздова Л.Ю., и др. Исследование РАКУРС: повышение эффективности и безопасности терапии статинами у больных с заболеваниями печени, желчного пузыря и/или желчевыводящих путей с помощью урсодезоксихолевой кислоты. Терапевтический архив. 2014;86(12):48-52 [Martsevich SYu, Kutishenko NP, Drozdova LYu, et al. Research PERSPECTIVE: improving the effectiveness and safety of statin therapy in patients with diseases of the liver, gallbladder and/or biliary tract using ursodeoxycholic acid. Terapevticheskii Arkhiv (Ter. Arkh.). 2014;86(12):48-52 (in Russian)].
  132. Nadinskaia M, Maevskaya M, Ivashkin V, et al. Ursodeoxycholic acid as a means of preventing atherosclerosis, steatosis and liver fibrosis in patients with nonalcoholic fatty liver disease. World J Gastroenterol. 2021;27(10):959-75. doi: 10.3748/wjg.v27.i10.959
  133. Sánchez-García A, Sahebkar A, Simental-Mendía M, Simental-Mendía LE. Effect of ursodeoxycholic acid on glycemic markers: A systematic review and meta-analysis of clinical trials. Pharmacol Res. 2018;135:144-9. doi: 10.1016/j.phrs.2018.08.008
  134. Stokes CS, Gluud LL, Casper M, Lammert F. Ursodeoxycholic acid and diets higher in fat prevent gallbladder stones during weight loss: a meta-analysis of randomized controlled trials. Clin Gastroenterol Hepatol. 2014;12(7):1090-100.e2; quiz e61. doi: 10.1016/j.cgh.2013.11.031
  135. Boerlage TCC, Haal S, Maurits de Brauw L, et al. Ursodeoxycholic acid for the prevention of symptomatic gallstone disease after bariatric surgery: study protocol for a randomized controlled trial (UPGRADE trial). BMC Gastroenterol. 2017;17(1):164. doi: 10.1186/s12876-017-0674-x
  136. Ratziu V, Sanyal A, Harrison SA, et al. Cenicriviroc Treatment for Adults With Nonalcoholic Steatohepatitis and Fibrosis: Final Analysis of the Phase 2b CENTAUR Study. Hepatology. 2020;72(3):892-905. doi: 10.1002/hep.31108
  137. Harrison SA, Wong VW, Okanoue T, et al. STELLAR-3 and STELLAR-4 Investigators. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: Results from randomized phase III STELLAR trials. J Hepatol. 2020;73(1):26-39. doi: 10.1016/j.jhep.2020.02.027
  138. Fougerat A, Montagner A, Loiseau N, et al. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells. 2020;9(7):1638. doi: 10.3390/cells9071638
  139. Younossi ZM, Ratziu V, Loomba R, et al. REGENERATE Study Investigators. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019;394(10215):2184-96. doi: 10.1016/S0140-6736(19)33041-7
  140. Ratziu V, Harrison SA, Francque S, et al. GOLDEN-505 Investigator Study Group. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-α and -δ, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening. Gastroenterology. 2016;150(5):1147-59.e5. doi: 10.1053/j.gastro.2016.01.038
  141. Agrawal R. The first approved agent in the Glitazar's Class: Saroglitazar. Curr Drug Targets. 2014;15(2):151-5. doi: 10.2174/13894501113149990199
  142. Kaul U, Parmar D, Manjunath K, et al. New dual peroxisome proliferator activated receptor agonist-Saroglitazar in diabetic dyslipidemia and non-alcoholic fatty liver disease: integrated analysis of the real world evidence. Cardiovasc Diabetol. 2019;18(1):80. doi: 10.1186/s12933-019-0884-3
  143. Yamashita S, Masuda D, Matsuzawa Y. Pemafibrate, a New Selective PPARα Modulator: Drug Concept and Its Clinical Applications for Dyslipidemia and Metabolic Diseases. Curr Atheroscler Rep. 2020;22(1):5. doi: 10.1007/s11883-020-0823-5
  144. Sven MF, Pierre B, Manal FA, et al. A randomised, double-blind, placebo-controlled, multi-centre, dose-range, proof-of-concept, 24-week treatment study of lanifibranor in adult subjects with non-alcoholic steatohepatitis: Design of the NATIVE study. Contemp Clin Trials. 2020;98:106170. doi: 10.1016/j.cct.2020.106170
  145. Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524-48.
  146. Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589-604.
  147. Younossi Z, Stepanova M, Ong JP, et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol. 2019;17(4):748-55.e743.
  148. Anstee QM, Reeves HL, Kotsiliti E, et al. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16(7):411-28.30.
  149. Anstee QM, Darlay R, Cockell S, et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J Hepatol. 2020;73(3):505-15.
  150. Geh D, Anstee QM, Reeves HL. NAFLD-Associated HCC: Progress and Opportunities. J Hepatocell Carcinoma. 2021;8:223-39S272213.
  151. Yang JD, Addissie BD, Mara KC, et al. GALAD score for hepatocellular carcinoma detection in comparison with liver ultrasound and proposal of GALADUS score. Cancer Epidemiol Biomarkers Prev. 2019;28(3):531-8.
  152. Best J, Bechmann LP, Sowa JP, et al. GALAD score detects early hepatocellular carcinoma in an International cohort of patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2020;18(3):728-35.e724.
  153. Piscaglia F, Svegliati-Baroni G, Barchetti A, et al. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: a multicenter prospective study. Hepatology. 2016;63(3):827-38.
  154. Stine JG, Wentworth BJ, Zimmet A, et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. Aliment Pharmacol Ther. 2018;48(7):696-703.
  155. Ma S, Zheng Y, Xiao Y, et al. Meta-analysis of studies using metformin as a reducer for liver cancer risk in diabetic patients. Medicine (Baltimore). 2017;96(19):e6888.
  156. Simon TG, Duberg AS, Aleman S, et al. Lipophilic statins and risk for hepatocellular carcinoma and death in patients with chronic viral hepatitis: results from a Nationwide Swedish Population. Ann Intern Med. 2019;171(5):318-27.
  157. Simon TG, Duberg A-S, Aleman S, et al. Association of aspirin with hepatocellular carcinoma and liver-related mortality. N Engl J Med. 2020;382(11):1018-28.
  158. Liu H, Xu HW, Zhang YZ, et al. Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice. World J Gastroenterol. 2015;21(36):10367-74. doi: 10.3748/wjg.v21.i36.10367
  159. Zhang H, Xu H, Zhang C, et al. Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis. Cell Death Discov. 2021;7:207. doi: 10.1038/s41420-021-00589-8
  160. Alberts DS, Martínez ME, Hess LM, et al. Phoenix and Tucson Gastroenterologist Networks. Phase III trial of ursodeoxycholic acid to prevent colorectal adenoma recurrence. J Natl Cancer Inst. 2005;97(11):846-53. doi: 10.1093/jnci/dji144
  161. Finn RS, Qin S, Ikeda M, et al. IMbrave150: updated overall survival data from a global, randomized, open-label Phase III study of atezolizumab + bevacizumab vs sorafenib in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2021;39:267.
  162. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894-905.
  163. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver International. 2017;37:S1,81-84. doi: 10.1111/liv.13299
  164. International Diabetes Federation. IDF Diabetes atlas. 10TH Edition, 2021. Available at: http://www.diabetesatlas.org. Accessed: 10.12.2021.
  165. Portillo Sanchez P. High Prevalence of Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus and Normal Plasma Aminotransferase Levels. J Clin Endocrinol Metab. 2014;100:jc20142739. doi: 10.1210/jc.2014-2739
  166. Doycheva I. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment Pharmacol Ther. 2016;43(1):83-95. doi: 10.1111/apt.13405
  167. Eslam M, Sanyal AJ, George J. On behalf of an international consensus panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158(7):1999-2014. doi: 10.1053/j.gastro.2019.11.312
  168. Targher G, Marchesini G, Byrne CD. Risk of type 2 diabetes in patients with non-alcoholic fatty liver disease: Causal association or epiphenomenon? Diabetes Metab. 2016;42(3):142-56. doi: 10.1016/j.diabet.2016.04.002
  169. Shah RV. Liver fat, statin use, and incident diabetes: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2015;242(1):211-7. doi: 10.1016/j.atherosclerosis.2015.07.018
  170. Brar G, Tsukamoto H. Alcoholic and non-alcoholic steatohepatitis: global perspective and emerging science. J Gastroenterol. 2019;54(3):218-25. doi: 10.1007/s00535-018-01542-w
  171. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebocontrolled phase 2 study. Lancet. 2016;387(10019):679-90. doi: 10.1016/S0140-6736(15)00803-X
  172. Newsome PN, Buchholtz K, Cusi K, et al. NN9931-4296 Investigators. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N Engl J Med. 2021;384(12):1113-24. doi: 10.1056/NEJMoa2028395
  173. Boettcher E, Csako G, Pucino F, et al. Meta-analysis: pioglitazone improves liver histology and fibrosis in patients with nonalcoholic steatohepatitis. Aliment Pharmacol Ther. 2012;35(1):66-75. doi: 10.1111/j.1365-2036.2011.04912.x
  174. Gautam A, Agrawal PK, Doneria J, Nigam A. Effects of Canagliflozin on Abnormal Liver Function Tests in Patients of Type 2 Diabetes with Non-Alcoholic Fatty Liver Disease. J Assoc Physicians India. 2018;66(8):62-6.
  175. Lazo M, Clark J. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis. 2008;28(4):339-50.
  176. Misra V. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk. Curr Gastroenterol Rep. 2009;11:50-5.
  177. Stefan N. Causes and Metabolic Consequences of Fatty Liver. Endoc Rev. 2008;29(7):939-60.
  178. Musso G. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obesity Reviews. 2010;11(6):430-45.
  179. Ong J, Younossi Z. Epidemiology and natural history of NAFLD and NASH. Clin Liver Dis. 2007;11:1-16.
  180. Leite N, et al. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int. 2009;29:113-9.
  181. Younossi Z. Global epidemiology of nonalcoholic fatty liver desease – Meta-analytic assessment of prevalence, incidence and outcomes. Hepatology. 2016;64:73-84.
  182. Utzschneider K, Kahn S. The Role of Insulin Resistance in Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab. 2006;91(12):4753-61.
  183. Targher G. Non-alcoholic hepatic steatosis and its relation to increased plasma biomarkers of inflammation and endothelial dysfunction in non-diabetic men. Role of visceral adipose tissue. Diabet Med. 2005;22(10):1354-8.
  184. Tilg H. Cytokines and the pathogenesis of non-alcoholic steatohepatitis. Gut. 2005;54:303-6.
  185. Marchesini G, et al. Nonalcoholic fatty liver, steatohepatitis and the metabolic syndrome. Hepatology. 2003;37:917-23.
  186. Karlas T, Petroff D, Sasso M, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66(5):1022-30.
  187. Siddiqui MS, Vuppalanchi R, Van Natta ML, et al. Vibration-Controlled Transient Elastography to Assess Fibrosis and Steatosis in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2019;17(1):156-63 e2.
  188. Eddowes PJ, Sasso M, Allison M, et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2019;156(6):1717-30.
  189. Haufe S. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology. 2011;53:1504-14.
  190. Asrih M. Diets and nonalcoholic fatty liver disease: the good and the bad. Clin Nutr. 2014;33:186-190.
  191. Houmard J. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol. 2004;96:101-6.
  192. Kopp C. Weight loss reduces tissue factor in morbidly obese patients. Obes Res. 2003;11(8):950-6.
  193. American Association for the Study of Liver Diseases; United States Food and Drug Administration. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases-U.S. Food and Drug Administration Joint Workshop. Hepatology. 2015;61:1392-405.
  194. Musso G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology. 2010;52:79-104.
  195. Vilsbøll T. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771.
  196. Armstrong M. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387:679-90.
  197. Lassailly G. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology. 2015;149:379-88.
  198. Bower G. Bariatric Surgery and Non-Alcoholic Fatty Liver Disease: a Systematic Review of Liver Biochemistry and Histology. Obes Surg. 2015;25:2280-9.
  199. Nomura J, Busso N, Ives A, et al. Febuxostat, an inhibitor of xanthine oxidase, suppresses lipopolysaccharide-induced MCP-1 production via MAPK phosphatase-1-mediated inactivation of JNK. PLoS One. 2013;25(8):e75527. doi: 10.1371/journal. pone.0075527
  200. Sertoglu E, Ercin CN, Celebi G, et al. The relationship of serum uric acid with nonalcoholic fatty liver disease. Clin Biochem. 2014;47(6):383-8. doi: 10.1016/j.clinbiochem.2014.01.029
  201. Lonardo A, Loria P, Leonardi F, et al. Fasting insulin and uric acid levels but not indices of iron metabolism are independent predictors of non-alcoholic fatty liver disease. A case-control study. Dig Liver Dis. 2002;34(3):204-11.
  202. Li Y, Xu C, Yu C, et al. Association of serum uric acid level with non-alcoholic fatty liver disease: A crosssectional study. J Hepatol. 2009;50(5):1029-34. doi: 10.1016/j.jhep.2008.11.021
  203. Ryu S, Chang Y, Kim SG, et al. Serum uric acid levels predict incident nonalcoholic fatty liver disease in healthy Korean men. Metabolism. 2011;60(6):860-6. doi: 10.1016/j.metabol.2010.08.005
  204. Gong S, Song J, Wang L, et al. Hyperuricemia and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2016;28(2):132-8. doi: 10.1097/MEG.0000000000000507
  205. Sirota JC, McFann K, Targher G, et al. Elevated serum uric acid levels are associated with non-alcoholic fatty liver disease independently of metabolic syndrome features in the United States: Liver ultrasound data from the National Health and Nutrition Examination Survey. Metabolism. 2013;62(3):392-9. doi: 10.1016/j.metabol.2012.08.013
  206. Oral A, Sahin T, Turker F, et al. Relationship between Serum Uric Acid Levels and Nonalcoholic Fatty Liver Disease in Non-Obese Patients. Medicina. 2019;55(9):600. doi: 10.3390/medicina55090600
  207. Утвержденные АРР в 2013 г. Федеральные клинические рекомендации по «ревматологии» с дополнениями от 2016 г. Режим доступа: https://rheumatolog.ru/experts/klinicheskie-rekomendacii/ Ссылка активна на 10.12.2021 [Federal Clinical Guidelines on "Rheumatology" approved by the ARR in 2013 with additions from 2016. Available at: 10.12.2021. Accessed: 10.12.2021 (in Russian)].
  208. Filip R, Radzki RP, Bieńko M. Novel insights into the relationship between nonalcoholic fatty liver disease and osteoporosis. Clin Interv Aging. 2018;13:1879-91. doi: 10.2147/CIA.S170533
  209. Zhu X, Yan H, Chang X, et al. Association between non-alcoholic fatty liver disease-associated hepatic fibrosis and bone mineral density in postmenopausal women with type 2 diabetes or impaired glucose regulation. BMJ Open Diabetes Res Care. 2020;8(1):e000999. doi: 10.1136/bmjdrc-2019-000999
  210. Mikami K, Endo T, Sawada N, et al. Association of Bone Metabolism with Fatty Liver Disease in the Elderly in Japan: A Community-based Study. Intern Med. 2020;59(10):1247-56. doi: 10.2169/internalmedicine.3906-19
  211. Chen HJ, Yang HY, Hsueh KC, et al. Increased risk of osteoporosis in patients with nonalcoholic fatty liver disease: A population-based retrospective cohort study. Medicine (Baltimore). 2018;97(42):e12835. doi: 10.1097/MD.0000000000012835
  212. Rosato V, Masarone M, Dallio M, et al. NAFLD and Extra-Hepatic Comorbidities: Current Evidence on a Multi-Organ Metabolic Syndrome. Int J Environ Res Public Health. 2019;16(18):3415. doi: 10.3390/ijerph16183415
  213. Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut. 2017;66(6):1138-53. doi: 10.1136/gutjnl-2017-313884
  214. Yilmaz Y. Review article: non-alcoholic fatty liver disease and osteoporosis – clinical and molecular crosstalk. Aliment Pharmacol Ther. 2012;36(4):345-52. doi: 10.1111/j.1365-2036.2012.05196.x
  215. Poggiogalle E, Donini LM, Lenzi A, et al. Non-alcoholic fatty liver disease connections with fat-free tissues: A focus on bone and skeletal muscle. World J Gastroenterol. 2017;23(10):1747-57. doi: 10.3748/wjg.v23.i10.1747
  216. Sung J, Ryu S, Song YM, Cheong HK. Relationship Between Non-alcoholic Fatty Liver Disease and Decreased Bone Mineral Density: A Retrospective Cohort Study in Korea. J Prev Med Public Health. 2020;53(5):342-52. doi: 10.3961/jpmph.20.089
  217. Chen DZ, Xu QM, Wu XX, et al. The Combined Effect of Nonalcoholic Fatty Liver Disease and Metabolic Syndrome on Osteoporosis in Postmenopausal Females in Eastern China. Int J Endocrinol. 2018;2018:2314769. doi: 10.1155/2018/2314769
  218. Белая Ж.Е., Рожинская Л.Я., Гребенникова Т.А., и др. Краткое изложение проекта федеральных клинических рекомендаций по остеопорозу. Остеопороз и остеопатии. 2020;23(2):4-21 [Belaya ZhE, Rozhinskaya LYa, Grebennikova TA, et al. Summary of the draft federal clinical guidelines on osteoporosis.Osteoporosis and Osteopathies. 2020;23(2):4-21 (in Russian)]. doi: 10.14341/osteo12710
  219. Targher G, Bertolini L, Scala L, et al. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2007;17:517-24.
  220. Barchetta I, Angelico F, Del Ben M, et al. Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med. 2011;9:85.
  221. Sookoian S, Pirola CJ. Non-alcoholic fatty liver disease is strongly associated with carotid atherosclerosis: a systematic review. J Hepatol. 2008;49(4):600-7.
  222. Madan SA, John F, Pyrsopoulos N, et al. Nonalcoholic fatty liver disease and carotid artery atherosclerosis in children and adults: a meta-analysis. Eur J Gastroenterol Hepatol. 2015;27(11):1237-48.
  223. Bhatia L, Scorletti E, Curzen N, et al. Improvement in non-alcoholic fatty liver disease severity is associated with a reduction in carotid intima-media thickness progression. Atherosclerosis. 2016;246:13-20.
  224. Oni ET, Agatston AS, Blaha MJ, et al. A systematic review: burden and severity of subclinical cardiovascular disease among those with nonalcoholic fatty liver; hould we care? Atherosclerosis. 2013;230(2):258-67.
  225. Luo J, Xu L, Li J, et al. Nonalcoholic fatty liver disease as a potential risk factor of cardiovascular disease. Eur J Gastroenterol Hepatol. 2015;27(3):193-9.
  226. Targher G, Byrne CD, Lonardo A, et al. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J Hepatol. 2016;65:589-600.
  227. Ekstedt M, Hagström H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015;61:1547-54.
  228. Mahfood Haddad T, Hamdeh S, Kanmanthareddy A, Alla VM. Nonalcoholic fatty liver disease and the risk of clinical cardiovascular events: A systematic review and meta-analysis. Diabetes Metab Syndr. 2017;11(Suppl.1):209-16.
  229. Mellinger JL, Pencina KM, Massaro JM, et al. Hepatic steatosis and cardiovascular disease outcomes: An analysis of the Framingham Heart Study. J Hepatol. 2015;63:470-6.
  230. Wong VS, Wong GL-H, Yip GW-K, et al. Coronary artery disease and cardiovascular outcomes in patients with non-alcoholic fatty liver disease. Gut. 2011;60:1721-27.
  231. Wong VW, Wong GL, Yeung JC, et al. Long-term clinical outcomes after fatty liver screening in patients undergoing coronary angiogram: A prospective cohort study. Hepatology. 2016;63:754-63.
  232. Ichikawa K, Miyoshi T, Osawa K, et al. Incremental prognostic value of non-alcoholic fatty liver disease over coronary computed tomography angiography findings in patients with suspected coronary artery disease. Eur J Prev Cardiol. 2021;19:zwab120. doi: 10.1093/eurjpc/zwab12
  233. Targher G, Bertolini L, Rodella S, et al. Nonalcoholic Fatty Liver Disease Is Independently Associated With an Increased Incidence of Cardiovascular Events in Type 2 Diabetic Patients. Diabetes Care. 2007;30:2119-21.
  234. Hu J, Xu Y, He Z, et al. Increased risk of cerebrovascular accident related to non-alcoholic fatty liver disease: A meta-analysis. Oncotarget. 2017;9:2752-60.
  235. Athyros VG, Boutari C, Stavropoulos K, et al. Statins: An Under-Appreciated Asset for the Prevention and the Treatment of NAFLD or NASH and the Related Cardiovascular Risk. Curr Vasc Pharmacol. 2018;16:246-53.
  236. Ishii N, Ohashi T, Nakade Y, et al. Ezetimibe for the treatment of non-alcoholic fatty liver disease: A meta-analysis. Hepatol Res. 2017;47:1417-28.
  237. Lee CH, Fu Y, Yang SJ, Chi CC. Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation on Non-Alcoholic Fatty Liver: A Systematic Review and Meta-Analysis. Nutrients. 2020;12(9):2769. doi: 10.3390/nu12092769
  238. Lopez-Suarez A, Guerrero JM, Elvira-Gonzalez J, et al. Nonalcoholic fatty liver disease is associated with blood pressure in hypertensive and nonhypertensive individuals from the general population with normal levels of alanine aminotransferase. Eur J Gastroenterol Hepatol. 2011;23:1011-17. doi: 10.1097/MEG.0b013e32834b8d52
  239. Feng RN, Du SS, Wang C, et al. Leannon-alcoholic fatty liver disease increases risk for metabolic disorders in a normal weight Chinese population. World J Gastroenterol. 2014;20:17932-40. doi: 10.3748/wjg.v20.i47.17932
  240. Lorbeer R, Bayerl C, Auweter S, et al. Association between MRI-derived hepatic fat fraction and blood pressure in participants without history of cardiovascular disease. J Hypertens. 2017;35:737-44. doi: 10.1097/HJH.0000000000001245
  241. Wang J, Chiu WH, Chen RC, et al. The clinical investigation of disparity of nonalcoholic fatty liver disease in a Chinese occupational population in Taipei, Taiwan: experience at a teaching hospital. Asia Pac J Public Health. 2015;27:NP1793-804. doi: 10.1177/1010539513483830
  242. Qian LY, Tu JF, Ding YH, et al. Association of blood pressure level with nonalcoholic fatty liver disease in nonhypertensive population: normal is not the new normal. Medicine (Baltimore). 2016;95:e4293. doi: 10.1097/MD.0000000000004293
  243. Bonnet F, Gastaldelli A, Pihan-Le Bars F, et al. D.E.S.I.R., RISC Study Groups. Gamma-glutamyltransferase, fatty liver index and hepatic insulin resistance are associated with incident hypertension in two longitudinal studies. J Hypertens. 2017;35:493-500. doi: 10.1097/HJH.0000000000001204
  244. Zhou K, Cen J. The fatty liver index (FLI) and incident hypertension: a longitudinal study among Chinese population. Lipids Health Dis. 2018;17:214. doi: 10.1186/s12944-018-0858-6
  245. Huh JH, Ahn SV, Koh SB, et al. A Prospective Study of fatty liver index and incident hypertension: the KoGES-ARIRANG Study. PLoS One. 2015;10:e0143560. doi: 10.1371/journal.pone.0143560
  246. Lau K, Lorbeer R, Haring R, et al. The association between fatty liver disease and blood pressure in a population-based prospective longitudinal study. J Hypertens. 2010;28:1829-35. doi: 10.1097/HJH.0b013e32833c211b
  247. Ryoo JH, Ham WT, Choi JM, et al. Clinical significance of non-alcoholic fatty liver disease as a risk factor for prehypertension. J Korean Med Sci. 2014;29:973-9. doi: 10.3346/jkms.2014.29.7.973
  248. Ryoo JH, Suh YJ, Shin HC, et al. Clinical association between non-alcoholic fatty liver disease and the development of hypertension. J Gastroenterol Hepatol. 2014;29:1926-31. doi: 10.1111/jgh.12643
  249. Sung KC, Wild SH, Byrne CD. Development of new fatty liver, or resolution of existing fatty liver, over five years of follow-up, and risk of incident hypertension. J Hepatol. 2014;60:1040-45. doi: 10.1016/j.jhep.2014.01.009
  250. Zhao YC, Zhao GJ, Chen Z, et al. Nonalcoholic Fatty Liver Disease: An Emerging Driver of Hypertension. Hypertension. 2020;75:275-84. doi: 10.1161/HYPERTENSIONAHA.119.13419
  251. Schwimmer JB, Johnson JS, Angeles JE, et al. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology. 2019;157:1109-22. doi: 10.1053/j.gastro.2019.06.028
  252. Marques FZ, Jama HA, Tsyganov K, et al. Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension. 2019;74(6):1279-93. doi: 10.1161/HYPERTENSIONAHA.119.13079
  253. Spinosa M, Stine JG. Nonalcoholic Fatty Liver Disease-Evidence for a Thrombophilic State? Curr Pharm Des. 2020;26(10):1036-44. doi: 10.2174/1381612826666200131101553
  254. Balta G, Altay C, Gurgey A. PAI-1 gene 4G/5G genotype: A risk factor for thrombosis in vessels of internal organs. Am J Hematol. 2002;71(2):89-93. doi: 10.1002/ajh.10192
  255. Verrijken A, Francque S, Mertens I, et al. Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2014; 59(1):121-9. doi: 10.1002/hep.26510
  256. Lombardi AM, Fabris R, Berti de Marinis G, et al. Defective ADAMTS13 synthesis as a possible consequence of NASH in an obese patient with recurrent thrombotic thrombocytopenic purpura. Eur J Haematol. 2014;92(6):497-501. doi: 10.1111/ejh.12273
  257. Kotronen A, Joutsi-Korhonen L, Sevastianova K, et al. Increased coagulation factor VIII, IX, XI and XII activities in non-alcoholic fatty liver disease. Liver Int. 2011;31(2):176-83. doi: 10.1111/j.1478-3231.2010.02375.x
  258. Tripodi A, Fracanzani AL, Primignani M, et al. Procoagulant imbalance in patients with non-alcoholic fatty liver disease. J Hepatol. 2014;61(1):148-54. doi: 10.1016/j.jhep.2014.03.013
  259. Northup PG, Argo CK, Shah N, Caldwell SH. Hypercoagulation and thrombophilia in nonalcoholic fatty liver disease: mechanisms, human evidence, therapeutic implications, and preventive implications. Semin Liver Dis. 2012;32(1):39-48. doi: 10.1055/s-0032-1306425
  260. Stine JG, Northup PG. Coagulopathy Before and After Liver Transplantation: From the Hepatic to the Systemic Circulatory Systems. Clin Liver Dis. 2017;21(2):253-74. doi: 10.1016/j.cld.2016.12.003
  261. Meltzer ME, Lisman T, de Groot PG, et al. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood. 2010;116(1):113-21. doi: 10.1182/blood-2010-02-267740
  262. Skurk T, Hauner H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord. 2004;28(11):1357-64. doi: 10.1038/sj.ijo.0802778
  263. El-Sayed MS, El-Sayed Ali Z, Ahmadizad S. Exercise and training effects on blood haemostasis in health and disease: an update. Sports Med. 2004;34(3):181-200. doi: 10.2165/00007256-200434030-00004
  264. Womack CJ, Nagelkirk PR, Coughlin AM. Exercise-induced changes in coagulation and fibrinolysis in healthy populations and patients with cardiovascular disease. Sports Med. 2003;33(11):795-807. doi: 10.2165/00007256-200333110-00002
  265. Van Stralen KJ, Le Cessie S, Rosendaal FR, Doggen CJ. Regular sports activities decrease the risk of venous thrombosis. J Thromb Haemost. 2007;5(11):2186-92. doi: 10.1111/j.1538-7836.2007.02732.x
  266. Kupchak BR, Creighton BC, Aristizabal JC, et al. Beneficial effects of habitual resistance exercise training on coagulation and fibrinolytic responses. Thromb Res. 2013;131(6):e227-34. doi: 10.1016/j.thromres.2013.02.014
  267. Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636-46. doi: 10.1016/j.jacc.2013.09.063
  268. Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH. Aortic stiffness: Current understanding and future directions. J Am Coll Cardiol. 2011;57:1511-22. doi: 10.1016/j.jacc.2010.12.017
  269. Athyros VG, Tziomalos K, Katsiki N, et al. Cardiovascular risk across the histological spectrum and the clinical manifestations of non-alcoholic fatty liver disease: An update. World J Gastroenterol. 2015;21:6820-34. doi: 10.3748/wjg.v21.i22.682
  270. Васюк Ю.А., Иванова С.В., Школьник Е.Л., и др. Согласованное мнение российских экспертов по оценке артериальной жесткости в клинической практике. Кардиоваскулярная терапия и профилактика. 2016;15(2):4-19 [Vasyuk YuA, Ivanova SV, Shkolnik EL, et al. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardiovascular Therapy and Prevention. 2016;15(2):4-19 (in Russian)]. doi: 10.15829/1728-8800-2016-2-4-19
  271. Blacher J, Guerin AP, Pannier B, et al. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99:2434-39. doi: 10.1161/01.cir.99.18.2434
  272. Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236-41. doi: 10.1161/01.hyp.37.5.1236
  273. Cardoso CR, Ferreira MT, Leite NC, Salles GF. Prognostic impact of aortic stiffness in high-risk type 2 diabetic patients: The Rio de Janeiro Type 2 Diabetes Cohort Study. Diabetes Care. 2013;36:3772-78. doi: 10.2337/dc13-0506
  274. Willum-Hansen T, Staessen JA, Torp-Pedersen C, et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 2006;113:664-670. doi: 10.1161/CIRCULATIONAHA.105.579342
  275. Jaruvongvanich V, Chenbhanich J, Sanguankeo A, et al. Increased arterial stiffness in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2017;29(9):e28-e35. doi: 10.1097/MEG.0000000000000909
  276. Huang RC, Beilin LJ, Ayonrinde O, et al. Importance of cardiometabolic risk factors in the association between nonalcoholic fatty liver disease and arterial stiffness in adolescents. Hepatology. 2013;58:1306-14. doi: 10.1002/hep.26495
  277. Sunbul M, Agirbasli M, Durmus E, et al. Arterial stiffness in patients with non-alcoholic fatty liver disease is related to fibrosis stage and epicardial adipose tissue thickness. Atherosclerosis. 2014;237:490-3. doi: 10.1016/j.atherosclerosis.2014.10.004
  278. Ozturk K, Uygun A, Guler AK, et al. Nonalcoholic fatty liver disease is an independent risk factor for atherosclerosis in young adult men. Atherosclerosis. 2015;240:380-386. doi: 10.1016/j.atherosclerosis.2015.04.009
  279. Chen Y, Xu M, Wang T, et al. Advanced fibrosis associates with atherosclerosis in subjects with nonalcoholic fatty liver disease. Atherosclerosis. 2015;241:145-50. doi: 10.1016/j.atherosclerosis.2015.05.002
  280. Villela-Nogueira CA, Leite NC, Cardoso CR, Salles GF. NAFLD and Increased Aortic Stiffness: Parallel or Common Physiopathological Mechanisms? Int J Mol Sci. 2016;17(4):460. doi: 10.3390/ijms17040460
  281. Chou CY, Yang YC, Wu JS, et al. Non-alcoholic fatty liver disease associated with increased arterial stiffness in subjects with normal glucose tolerance, but not pre-diabetes and diabetes. Diabetes Vasc Dis Res. 2015;12:359-65. doi: 10.1177/1479164115585009
  282. Packer M. Atrial Fibrillation and Heart Failure With Preserved Ejection Fraction in Patients With Nonalcoholic Fatty Liver Disease. Am J Med. 2020;133(2):170-7. doi: 10.1016/j.amjmed.2019.09.002
  283. Packer M. Leptin-aldosterone-neprilysin axis: identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity. Circulation. 2018;137:1614-31. doi: 10.1161/CIRCULATIONAHA.117.032474
  284. Whitsett M, Wilcox J, Yang A, et al. Atrial fibrillation is highly prevalent yet undertreated in patients with biopsy-proven nonalcoholic steatohepatitis. Liver Int. 2019;39:933-40. doi: 10.1111/liv.14018
  285. Wijarnpreecha K, Lou S, Panjawatanan P, et al. Association between diastolic cardiac dysfunction and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Dig Liver Dis. 2018;50(11):1166-75. doi: 10.1016/j.dld.2018.09.004
  286. Chung GE, Lee JH, Lee H, et al. Nonalcoholic fatty liver disease and advanced fibrosis are associated with left ventricular diastolic dysfunction. Atherosclerosis. 2018;272:137-44. doi: 10.1016/j.atherosclerosis.2018.03.027
  287. Zhang Z, Wang P, Guo F, et al. Chronic heart failure in patients with nonalcoholic fatty liver disease: prevalence, clinical features, and relevance. J Int Med Res. 2018;46:3959-69. doi: 10.1177/0300060518782780
  288. Hyogo H, Yamagishi S, Maeda S, et al. Atorvastatin improves disease activity of nonalcoholic steatohepatitis partly through its tumour necrosis factor-α-lowering property. Dig Liver Dis. 2012;44:492-6. doi: 10.1016/j.dld.2011.12.013
  289. Athyros VG, Tziomalos K, Gossios TD, et al. Greace Study Collaborative Group. Safety and efficacy of long-term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) Study: a post-hoc analysis. Lancet. 2010;376:1916-22. doi: 10.1016/S0140-6736(10)61272-X
  290. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicenter, double-blind, randomized, placebo-controlled phase 2 study. Lancet. 2016;387:679-90. doi: 10.1016/S0140-6736(15)00803-X
  291. Shibuya T, Fushimi N, Kawai M, et al. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective randomized controlled pilot study. Diabetes Obes Metab. 2018;20:438-42. doi: 10.1111/dom.13061
  292. Seko Y, Nishikawa T, Umemura A, et al. Efficacy and safety of canagliflozin in type 2 diabetes mellitus patients with biopsyproven nonalcoholic steatohepatitis classified as stage 1-3 fibrosis. Diabetes Metab Syndr Obes. 2018;11:835-43. doi: 10.2147/DMSO.S184767
  293. Díaz-Rodríguez E, Agra RM, Fernández ÁL, et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc Res. 2018;114:336-346. doi: 10.1093/cvr/cvx186
  294. Usman MS, Siddiqi TJ, Memon MM, et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: A systematic review and meta-analysis. Eur J Prev Cardiol. 2018;25:495-502. doi: 10.1177/2047487318755531
  295. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2020;ehaa612. doi: 10.1093/eurheartj/ ehaa612
  296. Haghbin H, Gangwani MK, Ravi SJK, et al. Nonalcoholic fatty liver disease and atrial fibrillation: possible pathophysiological links and therapeutic interventions. Ann Gastroenterol. 2020;33(6):603-14. doi: 10.20524/aog.2020.0550
  297. Sinner MF, Wang N, Fox CS, et al. Relation of circulating liver transaminase concentrations to risk of new-onset atrial fibrillation. Am J Cardiol. 2013;111:219-224.
  298. Käräjämäki AJ, Pätsi OP, Savolainen M, et al. Non-alcoholic fatty liver disease as a predictor of atrial fibrillation in middle-aged population (OPERA Study). PLoS One. 2015;10:e0142937.
  299. Wong CX, Sullivan T, Sun MT, et al. Obesity and the risk of incident, post-operative, and post-ablation atrial fibrillation: a meta-analysis of 626,603 individuals in 51 studies. JACC Clinical Electrophysiology. 2015;1:139-52. doi: 10.1016/j.jacep.2015.04.004
  300. Goudis CA, Korantzopoulos P, Ntalas IV, et al. Obesity and atrial fibrillation: A comprehensive review of the pathophysiological mechanisms and links. J Cardiol. 2015;66(5):361-9. doi: 10.1016/j.jjcc.2015.04.002
  301. Mahajan R, Lau DH, Brooks AG, et al. Electrophysiological, electroanatomical and structural remodeling of the atria as a consequence of sustained obesity. J Am Coll Cardiol. 2015;66(1):1-11. doi: 10.1016/j.jacc.2015.04.058
  302. Коморбидная патология в клинической практике. Алгоритмы диагностики и лечения. Клинические рекомендации. Кардиоваскулярная терапия и профилактика. 2019;18(1):5-66 [Comorbid pathology in clinical practice. Algorithms for diagnosis and treatment. Clinical recommendations. Cardiovascular Therapy and Prevention. 2019;18(1):5-66 (in Russian)]. doi: 10.15829/1728-8800-2019-1-5-66
  303. Фомина И.Г., Тарзиманова А.И., Ветлужский А.В., и др. Пропафенон при восстановлении синусового ритма у больных с персистирующей формой фибрилляции предсердий. «ПРОМЕТЕЙ» – открытое, мультицентровое, пилотное исследование в Российской Федерации. Кардиоваскулярная терапия и профилактика. 2005;4:65-69 [Fomina IG, Tarzimanova AI, Vetluzhsky AV, et al. Propafenone in restoring sinus rhythm in patients with persistent atrial fibrillation. PROMETHEUS is an open, multicenter, pilot study in the Russian Federation. Cardiovascular Therapy and Prevention. 2005;4:65-69 (in Russian)].
  304. Chang SH, Wu LS, Chiou MJ, et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc Diabetol. 2014;13:123.
  305. Von Haehling S, Schefold JC, Jankowska EA, et al. Ursodeoxycholic acid in patients with chronic heart failure: a double-blind, randomized, placebo-controlled, crossover trial. J Am Coll Cardiol. 2012;59:585-92.
  306. Rainer PP, Primessnig U, Harenkamp S, et al. Bile acids induce arrhythmias in human atrial myocardium – implications for altered serum bile acid composition in patients with atrial fibrillation. Heart. 2013;99:1685-92.
  307. Corey KE, Kartoun U, Zheng H, Shaw SY. Development and Validation of an Algorithm to Identify Nonalcoholic Fatty Liver Disease in the Electronic Medical Record. Dig Dis Sci. 2016;61:913-9. doi: 10.1007/s10620-015-3952-x
  308. Targher G, Byrne CD. Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nat Rev Nephrol. 2017;13:297-310. doi: 10.1038/nrneph.2017.16
  309. Musso G, Gambino R, Tabibian JH, et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 2014;11:e1001680. doi: 10.1371/journal.pmed.1001680
  310. Mantovani A, Zaza G, Byrne CD, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and metaanalysis. Metabolism. 2018;79:64-76. doi: 10.1016/j.metabol.2017.11.003
  311. Park H, Dawwas GK, Liu X, Nguyen MH. Nonalcoholic fatty liver disease increases risk of incident advanced chronic kidney disease: a propensity-matched cohort study. J Intern Med. 2019;286:711-22. doi: 10.1111/joim.12964
  312. Yeung MW, Wong GL, Choi KC, et al. Advanced liver fibrosis but not steatosis is independently associated with albuminuria in Chinese patients with type 2 diabetes. J Hepatol. 2017. doi: 10.1016/j.jhep.2017.09.020
  313. Lombardi R, Airaghi L, Targher G, et al. Liver fibrosis by FibroScan® independently of established cardiovascular risk parameters associates with macrovascular and microvascular complications in patients with type 2 diabetes. Liver Int. 2020;40:347-54. doi: 10.1111/liv.14274
  314. Chon YE, Kim HJ, Choi YB, et al. Decrease in waist-to-hip ratio reduced the development of chronic kidney disease in non-obese non-alcoholic fatty liver disease. Sci Rep. 2020;10:8996. doi: 10.1038/s41598-020-65940-y
  315. Heda R, Yazawa M, Shi M, et al. Non-alcoholic fatty liver and chronic kidney disease: Retrospect, introspect, and prospect. World J Gastroenterol. 2021;27(17):1864-82. doi: 10.3748/wjg.v27.i17.1864
  316. Monteillet L, Gjorgjieva M, Silva M, et al. Intracellular lipids are an independent cause of liver injury and chronic kidney disease in non alcoholic fatty liver disease-like context. Mol Metab. 2018;16:100-15. doi: 10.1016/j.molmet.2018.07.006
  317. Ackers I, Malgor R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diab Vasc Dis Res. 2018;15:3-13. doi: 10.1177/1479164117738442
  318. Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology – divergent pathophysiology. Nat Rev Endocrinol. 2017;13:710-30. doi: 10.1038/nrendo.2017.91
  319. Mencke R, Hillebrands JL. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev. 2017;35:124-46.
  320. Marcuccilli M, Chonchol M. NAFLD and Chronic Kidney Disease. Int J Mol Sci. 2016;17(4):562. doi: 10.3390/ijms17040562
  321. De Zeeuw D, Akizawa T, Audhya P, et al. BEACON Trial Investigators. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369(26):2492-503. doi: 10.1056/NEJMoa130603
  322. Musso G, Cassader M, Gambino R. PNPLA3 rs738409 and TM6SF2 rs58542926 gene variants affect renal disease and function in nonalcoholic fatty liver disease. Hepatology. 2015;62:658-9.
  323. Shimizu M, Suzuki K, Kato K., et al. Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes Metab. 2019;21:285-92.
  324. García-Lezana T, Raurell I, Bravo M, et al. Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis. Hepatology. 2018;67:1485-98.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».