Respiratory diseases and obesity: special phenotype or independent events: Review

Cover Page

Cite item

Full Text

Abstract

A combination of factors, including Western European eating habits, physical inactivity and genetic predisposition, lead to a dramatic increase in adipose tissue mass. A special place is occupied by abdominal obesity, in which there is an accumulation of adipose tissue in the mesentery of the small intestine and the omentum. Developing in conditions of visceral obesity, insulin resistance, dyslipidemia and systemic inflammation are one of the key components of the pathogenesis of type 2 diabetes mellitus, cardiovascular diseases, non-alcoholic fatty liver and pancreas disease, polycystic ovary disease, some forms of cancer (breast cancer, endometrial cancer, colonic and direct intestines). At the same time, the pathogenetic role of adipose tissue is not limited to its participation in the formation of the cardiometabolic continuum and oncogenesis. The most important role of metabolically active fat in the pathogenesis of many respiratory diseases is known, including bronchial asthma, obstructive sleep apnea and pulmonary hypertension. This paper presents an overview of current data on immunological, pathophysiological and clinical features of the phenotype of the combination of respiratory diseases with overweight and obesity.

About the authors

Evgeniy I. Shchepikhin

Central Tuberculosis Research Institute

Author for correspondence.
Email: shhepikhin11@yandex.ru
ORCID iD: 0000-0002-9146-0904

аспирант отд. дифференциальной диагностики туберкулеза легких и экстракорпоральных методов лечения

Russian Federation, Moscow

Evgene I. Shmelev

Central Tuberculosis Research Institute

Email: shhepikhin11@yandex.ru
ORCID iD: 0000-0002-1908-5601

д-р мед. наук, проф., гл. науч. сотр. отд. дифференциальной диагностики туберкулеза легких и экстракорпоральных методов лечения

Russian Federation, Moscow

Anna S. Zaytseva

Central Tuberculosis Research Institute

Email: shhepikhin11@yandex.ru
ORCID iD: 0000-0001-7155-5730

канд. мед. наук, ст. науч. сотр. отд. дифференциальной диагностики туберкулеза легких и экстракорпоральных методов лечения

Russian Federation, Moscow

References

  1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627-42. doi: 10.1016/S0140-6736(17)32129-3
  2. Недогода С.В., Барыкина И.Н., Саласюк А.С. Национальные клинические рекомендации по ожирению: концепция и перспективы. Вестник Волгоградского государственного медицинского университета. 2017;1(61):134-40 [Nedogoda SV, Barykina IN, Salasyuk AS. National clinical guidelines for obesity: concept and prospects. Vestnik VolGMU. 2017;1(61):134-40 (In Russian)].
  3. Brock JM, Billeter A, Müller-Stich BP, Herth F. Obesity and the Lung: What We Know Today. Respiration. 2020;99(10):856-66. doi: 10.1159/000509735
  4. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415-45. doi: 10.1146/annurev-immunol-031210-101322
  5. Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013;2013:139239. doi: 10.1155/2013/139239
  6. Сhawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 2011;11:738-49. doi: 10.1038/nri3071
  7. McLaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest. 2017;127:5-13. doi: 10.1172/JCI88876
  8. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111-17. doi: 10.1172/JCI57132
  9. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11:85-97. doi: 10.1038/nri2921
  10. Kiernan K, MacIver NJ. The Role of the Adipokine Leptin in Immune Cell Function in Health and Disease. Front Immunol. 2021;11:622468. doi: 10.3389/fimmu.2020.622468
  11. Pham DV, Park PH. Recent insights on modulation of inflammasomes by adipokines: a critical event for the pathogenesis of obesity and metabolism-associated diseases. Arch Pharm Res. 2020;43(10):997-1016. doi: 10.1007/s12272-020-01274-7
  12. Chwalba A, Machura E, Ziora K, Ziora D. The role of adipokines in the pathogenesis and course of selected respiratory diseases. Endokrynol Pol. 2019;70(6):504-10. doi: 10.5603/EP.a2019.0051
  13. Fang H, Judd RL. Adiponectin Regulation and Function. Compr Physiol. 2018;8(3):1031-63. doi: 10.1002/cphy.c170046
  14. Mattioli B, Straface E, Quaranta MG, et al. Leptin Promotes Differentiation and Survival of Human Dendritic Cells and Licenses Them for Th1 Priming. J Immunol. 2005;174(11):6820. doi: 10.4049/jimmunol.174.11.6820
  15. Tsiotra PC, Boutati E, Dimitriadis G, Raptis SA. High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells. Biomed Res Int. 2013;2013:487081. doi: 10.1155/2013/487081
  16. Frasca D, Blomberg BB. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging. Front Immunol. 2017;8:1003. doi: 10.3389/fimmu.2017.01003
  17. Song J, Deng T. The Adipocyte and Adaptive Immunity. Front Immunol. 2020;11:593058. doi: 10.3389/fimmu.2020.593058
  18. Marangoni RG, Korman BD, Wei J, et al. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol. 2015;67:1062-73. doi: 10.1002/art.38990
  19. Ohashi K, Parker JL, Ouchi N, et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem. 2010;285:6153-60. doi: 10.1074/jbc.M109.088708
  20. Mandal P, Pratt BT, Barnes M, et al. Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. J Biol Chem. 2011;286:13460-9. doi: 10.1074/jbc.M110.204644
  21. Lakota K, Wei J, Carns M, et al. Levels of adiponectin, a marker for PPAR-gamma activity, correlate with skin fibrosis in systemic sclerosis: potential utility as biomarker? Arthritis Res Ther. 2012;14:R102. doi: 10.1186/ar3827
  22. Żółkiewicz J, Stochmal A, Rudnicka L. The role of adipokines in systemic sclerosis: a missing link? Arch Dermatol Res. 2019;311(4):251-63. doi: 10.1007/s00403-019-01893-1
  23. Koo P, Gartman EJ, Sethi JM, McCool FD. Physiology in Medicine: physiological basis of diaphragmatic dysfunction with abdominal herniasimplications for therapy. J Appl Physiol (1985). 2015;118:142-7. doi: 10.1152/japplphysiol.00276.2014
  24. Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol. 2010;108:206-11. doi: 10.1152/japplphysiol.00694.2009
  25. Mafort TT, Rufino R, Costa CH, Lopes AJ. Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip Respir Med. 2016;11:28. doi: 10.1186/s40248-016-0066-z
  26. Dixon AE, Peters U. The effect of obesity on lung function. Expert Rev Respir Med. 2018;12(9):755-67. doi: 10.1080/17476348.2018.1506331
  27. Naimark A, Chernjak RM. Compliance of the respiratory system and its components in health and obesity. J Appl Physiol. 1960;15:377-82. doi: 10.1152/jappl.1960.15.3.377
  28. Jones RL, Nzekwu MM. The effects of body mass index on lung volumes. Chest. 2006;130(3):827-33. doi: 10.1378/chest.130.3.827
  29. Malli F, Papaioannou AI, Gourgoulianis KI, Daniil Z. The role of leptin in the respiratory system: an overview. Respir Res. 2010;11(1):152. doi: 10.1186/1465-9921-11-152
  30. Henson MC, Swan KF, Edwards DE, et al. Leptin receptor expression in fetal lung increases in late gestation in the baboon: a model for human pregnancy. Reproduction. 2004;127(1):87-94. doi: 10.1530/rep.1.00037
  31. Bruno A, Pace E, Chanez P, et al. Leptin and leptin receptor expression in asthma. J Allergy Clin Immunol. 2009;124(2):230-237,237.e1-4. doi: 10.1016/j.jaci.2009.04.032
  32. Tsuchiya T, Shimizu H, Horie T, Mori M. Expression of leptin receptor in lung: leptin as a growth factor. Eur J Pharmacol. 1999;365(2-3):273-9. doi: 10.1016/s0014-2999(98)00884-x
  33. Rajala MW, Scherer PE. Minireview: The adipocyte – at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology. 2003;144(9):3765-73. doi: 10.1210/en.2003-0580
  34. Groeben H, Meier S, Brown RH, et al. The effect of leptin on the ventilatory response to hyperoxia. Exp Lung Res. 2004;30(7):559-70. doi: 10.1080/01902140490489144
  35. Arteaga-Solis E, Zee T, Emala CW, et al. Inhibition of leptin regulation of parasympathetic signaling as a cause of extreme body weight-associated asthma. Cell Metab. 2013;17(1):35-48. doi: 10.1016/j.cmet.2012.12.004
  36. Jutant EM, Tu L, Humbert M, et al. The Thousand Faces of Leptin in the Lung. Chest. 2021;159(1):239-48. doi: 10.1016/j.chest.2020.07.075
  37. Park HY, Lim SY, Hwang JH, et al. Lung function, coronary artery calcification, and metabolic syndrome in 4905 Korean males. Respir Med. 2010;104(9):1326-35. doi: 10.1016/j.rmed.2010.02.024
  38. Brock JM, Billeter A, Müller-Stich BP, Herth F. Obesity and the Lung: What We Know Today. Respiration. 2020;99(10):856-66. doi: 10.1159/000509735
  39. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief. 2020;(360):1-8.
  40. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923-94. doi: 10.1016/S0140-6736(18)32225-6
  41. Dixon AE, Holguin F, Sood A, et al. An official American thoracic society workshop report: obesity and asthma. Proc Am Thorac Soc. 2010;7:325-3. doi: 10.1513/pats.200903-013ST
  42. Camargo CA, Weiss ST, Zhang S, et al. Prospective Study of Body Mass Index, Weight Change, and Risk of Adult-onset Asthma in Women. Arch Intern Med. 1999;159:2582-8. doi: 10.1001/archinte.159.21.2582
  43. Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. Am J Respir Crit Care Med. 2007;175(7):661-6. doi: 10.1164/rccm.200611-1717OC. Epub 2007 Jan 18.
  44. Brumpton BM, Camargo CA Jr, Romundstad PR, et al. Metabolic syndrome and incidence of asthma in adults: the HUNT study. Eur Respir J. 2013;42(6):1495-502. doi: 10.1183/09031936.00046013
  45. Von Behren J, Lipsett M, Horn-Ross PL, et al. Obesity, waist size and prevalence of current asthma in the California Teachers Study cohort. Thorax. 2009;64(10):889-93. doi: 10.1136/thx.2009.114579. Epub 2009 Aug 25.
  46. Kronander UN, Falkenberg M, Zetterström O. Prevalence and incidence of asthma related to waist circumference and BMI in a Swedish community sample. Respir Med. 2004;98(11):1108-16. doi: 10.1016/j.rmed.2004.03.022
  47. Dumas O, Varraso R, Gillman MW, et al. Longitudinal study of maternal body mass index, gestational weight gain, and offspring asthma. Allergy. 2016;71:1295-304. doi: 10.1111/all.12876
  48. Chen Z, Salam MT, Alderete TL, et al. Effects of Childhood Asthma on the Development of Obesity among School-aged Children. Am J Respir Crit Care Med. 2017;195:1181-8. doi: 10.1164/rccm.201608-1691OC
  49. Silva FMC, Oliveira EE, Gouveia ACC, et al. Obesity promotes prolonged ovalbumin-induced airway inflammation modulating T helper type 1 (Th1), Th2 and Th17 immune responses in BALB/c mice. Clin Exp Immunol. 2017;189(1):47-59. doi: 10.1111/cei.12958
  50. Rastogi D, Holguin F. Metabolic dysregulation, systemic inflammation, and pediatric obesity-related asthma. Ann Am Thorac Soc. 2017;14(Suppl. 5):363-7. doi: 10.1513/AnnalsATS.201703-231AW
  51. Telenga ED, Tideman SW, Kerstjens HAM, et al. Obesity in asthma: More neutrophilic inflammation as a possible explanation for a reduced treatment response. Allergy. 2012;67:1060-8. doi: 10.1111/j.1398-9995.2012.02855.x
  52. Leiria LO, Martins MA, Saad MJA. Obesity and asthma: Beyond TH2 inflammation. Metabolism. 2015;64:172-81. doi: 10.1016/j.metabol.2014.10.002
  53. Chapman DG, Berend N, King GG, et al. Increased airway closure is a determinant of airway hyperresponsiveness. Eur Respir J. 2008;32(6):1563-9. doi: 10.1183/09031936.00114007
  54. Zhu Z, Guo Y, Shi H, et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol. 2020;145:537-49. doi: 10.1016/j.jaci.2019.09.035
  55. Melen E, Himes BE, Brehm JM, et al. Analyses of shared genetic factors between asthma and obesity in children. J Allergy Clin Immunol. 2010;126:631-7.e1-8. doi: 10.1016/j.jaci.2010.06.030
  56. Scott HA, Wood LG, Gibson PG. Role of Obesity in Asthma: Mechanisms and Management Strategies. Curr Allergy Asthma Rep. 2017;17:53. doi: 10.1007/s11882-017-0719-9
  57. Dixon AE, Poynter ME. Mechanisms of asthma in obesity. Pleiotropic aspects of obesity produce distinct asthma phenotypes. Am J Respir Cell Mol Biol. 2016;54:601-8. doi: 10.1165/rcmb.2016-0017PS
  58. Bates JHT, Poynter ME, Frodella CM, et al. Pathophysiology to Phenotype in the Asthma of Obesity. Ann Am Thorac Soc. 2017;14(Suppl. 5):395-8. doi: 10.1513/AnnalsATS.201702-122AW
  59. Holguin F, Bleecker ER, Busse WW, et al. Obesity and asthma: an association modified by age of asthma onset. J Allergy Clin Immunol. 2011;127:1486-93.e2. doi: 10.1016/j.jaci.2011.03.036
  60. Lang JE, Hossain MJ, Lima JJ. Overweight children report qualitatively distinct asthma symptoms: analysis of validated symptom measures. J Allergy Clin Immunol. 2015;135:886-93. doi: 10.1016/j.jaci.2014.08.029
  61. Kim HY, Lee HJ, Chang YJ, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20(1):54-61. doi: 10.1038/nm.3423
  62. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159-66. doi: 10.1038/nm.3444
  63. Sutherland ER, Goleva E, Strand M, et al. Body mass and glucocorticoid response in asthma. Am J Respir Crit Care Med. 2008;178:682-7. doi: 10.1164/rccm.200801-076OC
  64. Boulet L-P, Franssen E. Influence of obesity on response to fluticasone with or without salmeterol in moderate asthma. Respir Med. 2007;101:2240-7. doi: 10.1016/j.rmed.2007.06.031
  65. Ananth S, Navarra A, Vancheeswaran R. Obese, non-eosinophilic asthma: frequent exacerbators in a real-world setting [published online ahead of print, 2021 Oct 28]. J Asthma. 2021;1-9. doi: 10.1080/02770903.2021.1996598
  66. GINA Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2021. Available at: https://ginasthma.org/gina-reports/ Accessed: 23.02.2022.
  67. Freitas PD, Ferreira PG, Silva AG, et al. The Role of Exercise in a Weight-Loss Program on Clinical Control in Obese Adults with Asthma. A Randomized Controlled Trial. Am J Respir Crit Care Med. 2017;195:32-42. doi: 10.1164/rccm.201603-0446OC
  68. Cordova-Rivera L, Gibson PG, Gardiner PA, McDonald VM. A systematic review of associations of physical activity and sedentary time with asthma outcomes. J Allergy Clin Immunol Pract. 2018;6(6):1968-81.e2. doi: 10.1016/j.jaip.2018.02.027. Epub 2018 Mar 3.
  69. Reddy RC, Baptist AP, Fan Z, et al. The Effects of Bariatric Surgery on Asthma Severity. Obes Surg. 2010;21:200-6. doi: 10.1007/s11695-010-0155-6
  70. Global Initiative for Chronic Obstructive Lung Disease (GOLD) – Global Strategy for Prevention, Diagnosis and Management of COPD, 2021. Available at: https://goldcopd.org/ Accessed: 23.02.2022.
  71. Celli BR, Thomas NE, Anderson JA, et al. Effect of pharmacotherapy on rate of decline of lung function in chronic obstructive pulmonary disease: results from the TORCH study. Am J Respir Crit Care Med. 2008;178(4):332-84. doi: 10.1164/rccm.200712-1869OC
  72. Tashkin DP, Celli B, Senn S, et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359(15):1543-54. doi: 10.1056/NEJMoa0805800
  73. Anzueto A, Wise R, Calverley P, et al. The Tiotropium safety and performance in Respimat(R) (TIOSPIR(R)) trial: spirometry outcomes. Respir Res. 2015;16:107. doi: 10.1186/s12931-015-0269-4
  74. Calverley PMA, Anderson JA, Brook RD, et al. Fluticasone furoate, vilanterol, and lung function decline in patients with moderate chronic obstructive pulmonary disease and heightened cardiovascular risk. Am J Respir Crit Care Med. 2018;197(1):47-55. doi: 10.1164/rccm.201610-2086OC
  75. Smulders L, van der Aalst A, Neuhaus EDET, et al. Decreased Risk of COPD Exacerbations in Obese Patients. COPD. 2020;17(5):485-91. doi: 10.1080/15412555.2020.1799963
  76. Wei YF, Tsai YH, Wang CC, et al. Impact of overweight and obesity on acute exacerbations of COPD – subgroup analysis of the Taiwan Obstructive Lung Disease cohort. Int J Chron Obstruct Pulmon Dis. 2017;12:2723-9. doi: 10.2147/COPD.S138571
  77. Wu Z, Yang D, Ge Z, et al. Body mass index of patients with chronic obstructive pulmonary disease is associated with pulmonary function and exacerbations: a retrospective real world research. J Thorac Dis. 2018;10(8):5086-99. doi: 10.21037/jtd.2018.08.67
  78. Sun Y, Milne S, Jaw JE, et al. BMI is associated with FEV1 decline in chronic obstructive pulmonary disease: a meta-analysis of clinical trials. Respir Res. 2019;20(1):236. doi: 10.1186/s12931-019-1209-5
  79. Ora J, Laveneziana P, Ofir D, et al. Combined effects of obesity and chronic obstructive pulmonary disease on dyspnea and exercise tolerance. Am J Respir Crit Care Med. 2009;180(10):964-71. doi: 10.1164/rccm.200904-0530OC
  80. Ora J, Laveneziana P, Wadell K, et al. Effect of obesity on respiratory mechanics during rest and exercise in COPD. J Appl Physiol (1985). 2011;111(1):10-9. doi: 10.1152/japplphysiol.01131.2010
  81. Овсянников Е.С. Персонализированный подход к диагностике и лечению хронической обструктивной болезни легких в сочетании с ожирением: дис. … докт. мед. наук. Воронеж, 2020. Режим доступа: https://www.dissercat.com/content/personalizirovannyi-podkhod-k-diagnostike-i-lecheniyu-khronicheskoi-obstruktivnoi-bolezni. Ссылка активна на 23.02.2022 [Ovsiannikov ES. Personalized approach to the diagnosis and treatment of chronic obstructive pulmonary disease in combination with obesity: doctoral dissertation. Voronezh, 2020. Available at: https://www.dissercat.com/content/personalizirovannyi-podkhod-k-diagnostike-i-lecheniyu-khronicheskoi-obstruktivnoi-bolezni. Accessed: 23.02.2022 (in Russian)].
  82. Lambert AA, Putcha N, Drummond MB, et al. Obesity is associated with increased morbidity in moderate to severe COPD. Chest. 2017;151(1):68-77. doi: 10.1016/j.chest.2016.08.1432
  83. Zewari S, Vos P, van den Elshout F, et al. Obesity in COPD: Revealed and Unrevealed Issues. COPD. 2017;14(6):663-73. doi: 10.1080/15412555.2017.1383978
  84. Zhou L, Yuan C, Zhang J, et al. Circulating leptin concentrations in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respiration. 2013;86(6):512-22. doi: 10.1159/000354191
  85. Hansel NN, Gao L, Rafaels NM, et al. Leptin receptor polymorphisms and lung function decline in COPD. Eur Respir J. 2009;34(1):103-10. doi: 10.1183/09031936.00120408
  86. Саркоидоз: Монография. Под ред. А.А. Визеля (Серия монографий Российского респираторного общества; Гл. ред. серии А.Г. Чучалин). М.: Атмосфера, 2010 [Sarkoidoz: Monografiia. Pod red. AA Vizelia (Seriia monografii Rossiiskogo respiratornogo obshchestva; Gl. red. serii AG Chuchalin). Moscow: Atmosfera, 2010 (in Russian)].
  87. Loke WS, Herbert C, Thomas PS. Sarcoidosis: Immunopathogenesis and Immunological Markers. Int J Chronic Dis. 2013;2013:9286. doi: 10.1155/2013/928601
  88. Grunewald J, Grutters JC, Arkema EV, et al. Sarcoidosis. Nat Rev Dis Primers. 2019;5(1):45. doi: 10.1038/s41572-019-0096-x
  89. Gvozdenovic BS, Mihailovic-Vucinic V, Vukovic M, et al. Effect of obesity on patient-reported outcomes in sarcoidosis. Int J Tuberc Lung Dis. 2013;17(4):559-64. doi: 10.5588/ijtld.12.0665
  90. Cozier YC, Govender P, Berman JS. Obesity and sarcoidosis: consequence or contributor? Curr Opin Pulm Med. 2018;24(5):487-94. doi: 10.1097/MCP.0000000000000503
  91. Щепихин Е.И., Адамовская Е.Н. Особенности саркоидоза у пациентов с избыточной массой тела и ожирением. Вестник ЦНИИТ. 2021;S1:128-9 [Shchepikhin EI, Adamovskaya EN. The features of sarcoidosis in overweight and obese patients. Bulletin CTRI. 2021;S1:128-9 (in Russian)]. doi: 10.7868/s2587667821050563
  92. Turner GA, Lower EE, Corser BC, et al. Sleep apnea in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 1997;14(1):61-4.
  93. Pihtili A, Bingol Z, Kiyan E, et al. Obstructive sleep apnea is common in patients with interstitial lung disease. Sleep Breath. 2013;17:1281-8. doi: 10.1007/s11325-013-0834-3
  94. Lal C, Medarov BI, Judson MA. Interrelationship between sleep-disordered breathing and sarcoidosis. Chest. 2015;148(4):1105-14. doi: 10.1378/chest.15-0584
  95. Anderson MR, Kim JS, Allison M, et al. Adiposity and interstitial lung abnormalities in community dwelling adults: the MESA cohort study. Chest. 2021;160(2):582-94. doi: 10.1016/j.chest.2021.03.058
  96. Jouneau S, Crestani B, Thibault R, et al. Analysis of body mass index, weight loss and progression of idiopathic pulmonary fibrosis. Respir Res. 2020;21(1):312. doi: 10.1186/s12931-020-01528-4
  97. Kulkarni T, Yuan K, Tran-Nguyen TK, et al. Decrements of body mass index are associated with poor outcomes of idiopathic pulmonary fibrosis patients. PLoS One. 2019;14(10):e0221905. doi: 10.1371/journal.pone.0221905
  98. Jain M, Budinger GR, Lo A, et al. Leptin promotes fibroproliferative acute respiratory distress syndrome by inhibiting peroxisome proliferator-activated receptor-γ. Am J Respir Crit Care Med. 2011;183(11):1490-8. doi: 10.1164/rccm.201009-1409OC
  99. Cao M, Swigris JJ, Wang X, et al. Plasma Leptin Is Elevated in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Mediators Inflamm. 2016;2016:6940480. doi: 10.1155/2016/6940480

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies