Hydrogen effect on the mechanisms of mucosal immunity in patients with COVID-19

Cover Page

Cite item

Full Text

Abstract

Aim. To study the inhalation of an active form of hydrogen effect to mucosal and system immunity in a rehabilitation program for health workers.

Materials and methods. The study involved patients that survived COVID-19 after therapy with inhaled hydrogen for 90 minutes (n=30), and a control group of patients treated according to standard protocol for managing patients that survived COVID-19 during the rehabilitation period (n=30). Biomaterial was carried out in 2 stages: on the first day of the study, before the accepted therapy and on the 10th day of the study. The indicators of humoral and cellular immunity were studied. The levels of secretory immunoglobulin A (sIgA) and IgG were investigated using the method of enzyme-linked immunosorbent assay. Phagocytosis was assessed on a Beckman Coulter FC-500 flow cytometer. Statistical data processing was carried out in the GraphPad Prism 7.00 software using nonparametric methods.

Results. It was shown that the phagocytic index (PI) of monocytes in nasal scrapings after inhaled hydrogen treatment did not significantly change relative to the first day of treatment and control, while the PI of granulocytes in nasal scrapings significantly increased relative to the first day by 2.5 times (p=0.000189), as well as relative to the control by 1.1 times (p=0.047410). PI of monocytes in pharyngeal scrapings showed a significant increase relative to the first day of treatment by 2.8 times (p=0.041103), however, did not differ relative to the control. PI of granulocytes of pharyngeal scraping did not differ significantly relative to the first day and control. PI of granulocytes and blood monocytes of the studied group did not change significantly. PI of granulocytes and monocytes of peripheral blood relative to control during therapy did not change. The sIgA level in nasal scrapings significantly increased by 2.9 times, while in pharyngeal scrapings the level of sIgA significantly decreased by 2 times.

Сonclusion. We have shown an increase in granulocytes PI in the nasal cavity and oral monocytes, as well as in the level of sIgA in the nasal cavity during therapy with active hydrogen. The data obtained indicate the effectiveness of therapy, which can be used both in the treatment of COVID-19, and in post-COVID syndrome as an additional therapy. The absence of changes in blood parameters, as well as individual links in nasal and pharyngeal scrapings, requires further study to develop ways to overcome treatment tolerance.

About the authors

Oxana A. Svitich

Mechnikov Research Institute for Vaccines and Serums

Author for correspondence.
Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389
SPIN-code: 8802-5569

чл.-кор. РАН, д-р мед. наук, проф., дир., зав. лаб. молекулярной иммунологии

Russian Federation, Moscow

Irina A. Baranova

Pirogov Russian National Research Medical University

Email: svitichoa@yandex.ru
ORCID iD: 0000-0002-2469-7346

д-р мед. наук, проф., проф. каф. госпитальной терапии педиатрического фак-та

Russian Federation, Moscow

Nadezhda O. Kryukova

Pirogov Russian National Research Medical University

Email: svitichoa@yandex.ru
ORCID iD: 0000-0002-8167-0959

аспирант, ассистент каф. госпитальной терапии педиатрического фак-та

Russian Federation, Moscow

Alexander V. Poddubikov

Mechnikov Research Institute for Vaccines and Serums

Email: svitichoa@yandex.ru
ORCID iD: 0000-0001-8962-4765

канд. мед. наук, зав. лаб. микробиологии условно-патогенных бактерий

Russian Federation, Moscow

Alexandra B. Vinnitskaya

Mechnikov Research Institute for Vaccines and Serums

Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-0717-8648

науч. сотр. лаб. молекулярной иммунологии

Russian Federation, Moscow

Natalia D. Abramova

Mechnikov Research Institute for Vaccines and Serums

Email: svitichoa@yandex.ru
ORCID iD: 0000-0002-7307-0515

мл. науч. сотр. лаб. молекулярной иммунологии

Russian Federation, Moscow

Valeria V. Zakharova

Pirogov Russian National Research Medical University

Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-3941-1934

ординатор каф. госпитальной терапии педиатрического фак-та

Russian Federation, Moscow

Ludmila V. Shogenova

Pirogov Russian National Research Medical University

Email: svitichoa@yandex.ru
ORCID iD: 0000-0001-9285-9303

канд. мед. наук, доц. каф. внутренних болезней педиатрического фак-та

 

Russian Federation, Moscow

Mikhail P. Kostinov

Mechnikov Research Institute for Vaccines and Serums

Email: svitichoa@yandex.ru
ORCID iD: 0000-0002-1382-9403

д-р мед. наук, проф., зав. лаб. вакцинопрофилактики и иммунотерапии аллергических заболеваний

Russian Federation, Moscow

Alexander G. Chuchalin

Pirogov Russian National Research Medical University

Email: svitichoa@yandex.ru
ORCID iD: 0000-0002-5070-5450

акад. РАН, д-р мед. наук., проф., зав. каф. госпитальной терапии педиатрического фак-та, председатель правления Российского респираторного общества

Russian Federation, Moscow

References

  1. Steinhubl SR. Why have antioxidants failed in clinical trials? Am J Cardiol. 2008;101(10A):14D-9D. doi: 10.1016/j.amjcard.2008.02.003
  2. Xia C, Liu W, Zeng D, et al. Effect of hydrogen-rich water on oxidative stress, liver function, and viral load in patients with chronic hepatitis B. Clin Transl Sci. 2013;6(5):372-5. doi: 10.1111/cts.12076
  3. Ge L, Yang M, Yang NN, et al. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget. 2017;8:102653-73. doi: 10.18632/oncotarget.21130
  4. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992-1000.e3. doi: 10.1016/j.chom.2020.04.009
  5. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8. doi: 10.1093/cid/ciaa248
  6. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433
  7. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652
  8. Leppkes M, Knopf J, Naschberger E, et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020;58:102925. doi: 10.1016/j.ebiom.2020.102925
  9. Quinti I, Mortari EP, Fernandez Salinas A, et al. IgA Antibodies and IgA Deficiency in SARS-CoV-2 Infection. Front Cell Infect Microbiol. 2021;11:655896. doi: 10.3389/fcimb.2021.655896
  10. Demers-Mathieu V, DaPra C, Mathijssen GB, Medo E. Previous viral symptoms and individual mothers influenced the leveled duration of human milk antibodies cross-reactive to S1 and S2 subunits from SARS-CoV-2, HCoV-229E, and HCoV-OC43. J Perinatol. 2021;41(5):952-60. doi: 10.1038/s41372-021-01001-0
  11. Varadhachary A, Chatterjee D, Garza J, et al. Salivary anti-SARS-CoV-2 IgA as an accessible biomarker of mucosal immunity against COVID-19. medRxiv. 2020;2020.08.07.20170258. doi: 10.1101/2020.08.07.20170258

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparative characteristics of phagocytic activity of granulocytes in the blood.

Download (66KB)
3. Fig. 2. Comparative characteristics of the phagocytic activity of monocytes in the blood.

Download (67KB)
4. Fig. 3. Comparative characteristics of phagocytic activity of monocytes in nasal scraping.

Download (67KB)
5. Fig. 4. Comparative characteristics of the phagocytic activity of granulocytes in nasal scrapings.

Download (75KB)
6. Fig. 5. Comparative characteristics of the phagocytic activity of monocytes in pharyngeal scraping.

Download (68KB)
7. Fig. 6. Comparative characteristics of phagocytic activity of granulocytes in pharyngeal scraping.

Download (66KB)
8. Fig. 7. Comparative characteristics of the sIgA level in nasal scraping in the test group.

Download (64KB)
9. Fig. 8. Comparative characteristics of sIgA in pharyngeal scraping in the test group.

Download (66KB)

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies