Metabolic, inflammatory and imaging biomarkers in evaluation of coronary atherosclerosis severity in patients with coronary artery disease and diabetes mellitus type 2

Cover Page

Cite item

Full Text

Abstract

Aim. To study interconnections between epicardial adipose tissue thickness (EATt), parameters of glucose metabolism/insulin, C-reactive protein (hsCRP), serum adipokines and severity of coronary artery disease (CAD) depending on the presence of diabetes mellitus type 2 (DM 2); to determine significant markers of CAD severity in patients with DM 2.

Materials and methods. The study involved 106 patients with CAD (m/f – 64/42, 60.9±6.8 years), including patients with DM 2 (group 1, n=35) and non-diabetic patients (group 2, n=71). Severity of CAD was evaluated according to angiography data with calculation of Gensini Score (GS). EATt was assessed via echocardiography. Serum levels of glucose/insulin metabolism parameters, lipid fractions, hsCRP and adipokines were evaluated. Clinical parameters, including GS, did not differ between groups.

Results. EAT thickness median was elevated in gr.1 (5.1 mm vs. 4.4 mm in group 2), while adiponectin levels were decreased (6.55 µg/ml vs. 7.71 µg/ml). Linear regression of body mass index and resistin levels on EATt was revealed in gr.1; in gr.2 EATt linearly increased with waist circumference increment when EATt<6 mm. Linear regression of EATt on GS was revealed in gr.1 when EATt<8 mm, while linear regression in the whole GS range was obtained for HDL-C and hsCRP levels.

Conclusion. Study results demonstrate differences in mechanisms of deposition and functioning of epicardial and abdominal adipose tissue depending on the presence or absence of diabetic status. Patients with DM2 are characterized by the excessive EAT deposition and decrease of serum adiponectin levels compared to non-diabetic patients in the equal conditions. Independent markers of CAD severity in DM 2 are decreased HDL-C and increased hsCRP levels, but not EATt.

About the authors

Olga A. Koshelskaya

Tomsk National Research Center for Medicine

Email: koshel@live.ru
ORCID iD: 0000-0002-6679-1269

д-р мед. наук, проф., вед. науч. сотр. отд. атеросклероза и хронической ишемической болезни сердца НИИ кардиологии

Russian Federation, Tomsk

Olga A. Kharitonova

Tomsk National Research Center for Medicine

Author for correspondence.
Email: koshel@live.ru
ORCID iD: 0000-0002-2818-5882

мл. науч. сотр. отд. атеросклероза и хронической ишемической болезни НИИ кардиологии

Russian Federation, Tomsk

Irina V. Kologrivova

Tomsk National Research Center for Medicine

Email: koshel@live.ru
ORCID iD: 0000-0003-4537-0008

канд. мед. наук, науч. сотр. отд. функциональной и лабораторной диагностики НИИ кардиологии

Russian Federation, Tomsk

Tatiana E. Suslova

Tomsk National Research Center for Medicine

Email: koshel@live.ru
ORCID iD: 0000-0001-9645-6720

канд. мед. наук, вед. науч. сотр. отд. функциональной и лабораторной диагностики НИИ кардиологии

Russian Federation, Tomsk

Natalia Yu. Margolis

Tomsk National Research Center for Medicine

Email: koshel@live.ru
ORCID iD: 0000-0001-8890-9814

канд. техн. наук отд. функциональной и лабораторной диагностики НИИ кардиологии

Russian Federation, Tomsk

Ekaterina K. Tereshenkova

Tomsk National Research Center for Medicine

Email: koshel@live.ru
ORCID iD: 0000-0002-2613-7852

канд. мед. наук, мл. науч. сотр. отд. атеросклероза и хронической ишемической болезни сердца НИИ кардиологии

Russian Federation, Tomsk

Anastasiia N. Rybina

Tomsk National Research Center for Medicine

Email: koshel@live.ru
ORCID iD: 0000-0002-6488-0647

канд. мед. наук, мл. науч. сотр. отд. рентгеновских и томографических методов диагностики НИИ кардиологии

Russian Federation, Tomsk

Rostislav S. Karpov

Tomsk National Research Center for Medicine

Email: koshel@live.ru
ORCID iD: 0000-0002-7011-4316

акад. РАН, д-р мед. наук, проф., науч. рук. НИИ кардиологии

Russian Federation, Tomsk

References

  1. Berg G, Miksztowicz V, Morales C, Barchuk M. Epicardial Adipose Tissue in Cardiovascular Disease. Adv Exp Med Biol. 2019;1127:131-43. doi: 10.1007/978-3-030-11488-6_9
  2. Li, Liu B, Li Y, et al. Epicardial fat tissue in patients with diabetes mellitus: а systematic review and meta-analysis. Cardiovasc. Diabetol. 2019;18(1):3. doi: 10.1186/s12933-019-0807-3
  3. Iacobellis G, Leonetti F. Epicardial adipose tissue and insulin resistance in obese subjects. J Clin Endocrinol Metab. 2005;90(11):6300-2. doi: 10.1210/jc.2005-1087
  4. Iacobellis G, Barbarini G, Letizia C, Barbaro G. Epicardial fat thickness and nonalcoholic fatty liver disease in obese subjects. Obesity (Silver Spring). 2014;22(2):332-6. doi: 10.1002/oby.20624
  5. Wang CP, Hsu HL, Hung WC, et al. Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clin Endocrinol (Oxf). 2009;70(6):876-82. doi: 10.1111/j.1365-2265.2008.03411.x
  6. Kim HM, Kim KJ, Lee HJ, et al. Epicardial adipose tissue thickness is an indicator for coronary artery stenosis in asymptomatic type 2 diabetic patients: its assessment by cardiac magnetic resonance. Cardiovasc Diabetol. 2012;11:83. doi: 10.1186/1475-2840-11-83
  7. Uygur B, Celik O, Ozturk D, et al. The relationship between location-specific epicardial adipose tissue volume and coronary atherosclerotic plaque burden in type 2 diabetic patients. Kardiol Pol. 2017;75(3):204-12. doi: 10.5603/KP.a2016.0167
  8. Seker T, Turkoglu C, Harbalıoglu H, Gur M. The impact of diabetes on the association between epicardial fat thickness and extent and complexity of coronary artery disease in patients with non-ST elevation myocardial infarction. Kardiol Pol. 2017;75(11):1177-84. doi: 10.5603/KP.a2017.0139
  9. Nasri A, Najafian J, Derakhshandeh SM, Madjlesi F. Epicardial fat thickness and severity of coronary heart disease in patients with diabetes mellitus type II. ARYA Atheroscler. 2018;14(1):32-7. doi: 10.22122/arya.v14i1.1552
  10. Iacobellis G, Assael F, Ribaudo MC, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2003;11(2):304-10. doi: 10.1038/oby.2003.45
  11. Li Y, Liu B, Li Y, et al. Epicardial fat tissue in patients with diabetes mellitus: A systematic review and meta-analysis. Cardiovasc Diabetol. 2019;18(1):3. doi: 10.1186/s12933-019-0807-3
  12. Toczylowski K, Hirnle T, Harasiu D, et al. Plasma concentration and expression of adipokines in epicardial and subcutaneous adipose tissue are associated with impaired left ventricular filling pattern. J Transl Med. 2019;17(1):310. doi: 10.1186/s12967-019-2060-7
  13. Fernández-Trasancos Á, Guerola-Segura R, Paradela-Dobarro B, et al. Glucose and Inflammatory Cells Decrease Adiponectin in Epicardial Adipose Tissue Cells: Paracrine Consequences on Vascular Endothelium. J Cell Physiol. 2016;231(5):1015-23. doi: 10.1002/jcp.25189
  14. Burgeiro A, Fuhrmann A, Cherian S, Espinoza D, Jarak I, Carvalho RA, et al. Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am J Physiol Endocrinol Metab. 2016;310(7):E550-64. doi: 10.1152/ajpendo.00384.2015
  15. Salazar J, Luzardo E, Mejías JC, et al. Epicardial Fat: Physiological, Pathological, and Therapeutic Implications. Cardiol Res Pract. 2016;2016:1291537. doi: 10.1155/2016/1291537
  16. Qatanani M., Szwergold NR, Greaves DR, et al. Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. J Clin Invest. 2009;119(3):531-9. doi: 10.1172/JCI37273
  17. Kleinaki Z, Agouridis AP, Zafeiri M, et al. Epicardial adipose tissue deposition in patients with diabetes and renal impairment: Analysis of the literature. World J Diabetes. 2020;11(2):33-41. doi: 10.4239/wjd.v11.i2.33
  18. Alexopoulos N, Melek BH, Arepalli CD, et al. Effect of Intensive Versus Moderate Lipid- Lowering Therapy on Epicardial Adipose Tissue in Hyperlipidemic Post-Menopausal Women: A Substudy of the BELLES Trial (Beyond Endorsed Lipid Lowering with EBT Scanning). J Am Coll Cardiol. 2013;61(19):1956-61. doi: 10.1016/j.jacc.2012.12.051
  19. Parisi V, Petraglia L, D’Esposito V, et al. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue. Int J Cardiol. 2019;274:326-30. doi: 10.1016/j.ijcard.2018.06.106
  20. Marchington JM, Mattacks CA, Pond CM. Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B. 1989;94(2):225-32. doi: 10.1016/0305-0491(89)90337-4
  21. Stehouwer CD, Gall MA, Twisk JW, et al. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes. 2002;51(4):1157-65. doi: 10.2337/diabetes.51.4.1157
  22. Dehkordi RF. Association of Inflammatory Mediators with Coronary Artery Disease in Diabetic Patients. J Basic Clin Pathophysiol. 2015;3(1):47-50. doi: 10.22070/jbcp.2015.167
  23. Strang F, Schunkert H. C-Reactive Protein and Coronary Heart Disease: All Said – Is Not It? Mediators Inflamm. 2014;2014:757123. doi: 10.1155/2014/757123
  24. Rueda CM, Rodríguez-Perea AL, Moreno-Fernandez M, et al. High density lipoproteins selectively promote the survival of human regulatory T cells. J Lipid Res. 2017;58(8):1514-23. doi: 10.1194/jlr.M072835
  25. Кологривова И.В., Кошельская О.А., Суслова Т.Е., и др. Взаимосвязь факторов воспаления и метаболических параметров при ожирении у пациентов с артериальной гипертонией высокого и очень высокого риска. Российский кардиологический журнал. 2018;23(5):27-33 [Kologrivova IV, Koshelskaya OA, Suslova TE, et al. Interplay of inflammation and metabolic factors in comorbid obesity and arterial hypertension of high and very high risk. Russian J Cardiology. 2018;23(5):27-33 (in Russian)]. doi: 10.15829/1560-4071-2018-5-27-33
  26. Namiri-Kalantari R, Gao F, Chattopadhyay A, et al. The dual nature of HDL: anti-Inflammatory and pro-Inflammatory. Biofactors. 2015;41(3):153-9. doi: 10.1002/biof.1205

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scatter diagrams of the GS index in the group of patients with a combination of ischemic heart disease and diabetes mellitus (DM) 2: a – scatter diagram of the GS index and hs-CRP; b – scatter diagram of the GS index and high density lipoprotein (HDL)- cholesterol.

Download (182KB)

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies