Administration of the immunomodulatory drug aminodihydrophthalazinedione sodium for prevention of progression pneumonia induced COVID-19


Cite item

Full Text

Abstract

Aim – to determine the efficacy of drug aminodihydrophthalazinedione sodium (Galavit) for prevention of progression of the coronavirus infection pulmonary complications: acceleration of regression of pulmonary infiltrates and resolution of COVID-induced pneumonia. 22 patients with medium and severe COVID-induced pneumonia were included in the study. The study included 8 men and 14 women, the average age was 62.1±7.4 years. Patients with more than one adverse prognostic factor made 82%. Average volume of pulmonary tissue affection (computer tomography – CT-2, 25–50% of lung volume) was registered in 13 (59.1%) patients, significant volume (CT-3, 50–75% of lung volume), in 9 (40.9%) patients. All patients had progressive respiratory failure manifestations due to hypoxemia and related diseases. Aminodihydrophthalazinedione sodium was administered for 7–14 days from the beginning of disease, at the end of the course of standard complex therapy, in case of preservation of signs of intoxication, negative dynamics according to computer tomography data. Administration of aminodihydrophthalazinedione sodium had a positive effect on the dynamics of clinical scores. The progression of respiratory failure was halted and there was an increase in SpO2 values. According to the control computer tomography data the stabilization of the pulmonary parenchyma affection degree was noted, as well as reduction of the size of the compacted areas in the pulmonary tissue and formation of the picture of organising pneumonia that contributed to reduction of respiratory failure grade. The use of aminodihydrophthalazinedione sodium in complex therapy of COVID-induced pneumonia has a modulating effect on the immune system, prevents the progression of pulmonary tissue affection, promotes regression of infiltration foci, preventing the development of excessive pneumofibrosis and the progression of respiratory failure.

About the authors

A. A. Svistunov

Sechenov First Moscow State Medical University (Sechenov University)

Email: nataschamishchenko@yandex.ru
ORCID iD: 0000-0003-1592-5703

чл.-кор. РАН, д.м.н., проф., первый проректор

Russian Federation, Moscow

G. K. Makhnach

Sechenov First Moscow State Medical University (Sechenov University)

Email: nataschamishchenko@yandex.ru
ORCID iD: 0000-0002-4820-3654

к.м.н., доц. каф. пульмонологии

Russian Federation, Moscow

D. V. Bunina

Sechenov First Moscow State Medical University (Sechenov University)

Email: nataschamishchenko@yandex.ru
ORCID iD: 0000-0002-5646-765X

врач-пульмонолог

Russian Federation, Moscow

T. V. Khorobrykh

Sechenov First Moscow State Medical University (Sechenov University)

Email: nataschamishchenko@yandex.ru
ORCID iD: 0000-0001-5769-5091

проф. РАН, д.м.н., проф., зав. каф. факультетской хирургии №2

Russian Federation, Moscow

M. V. Volgin

Sechenov First Moscow State Medical University (Sechenov University)

Email: nataschamishchenko@yandex.ru
ORCID iD: 0000-0001-6197-6814

клин. ординатор каф. факультетской хирургии №2

Russian Federation, Moscow

V. G. Agadzhanov

Sechenov First Moscow State Medical University (Sechenov University)

Email: nataschamishchenko@yandex.ru
ORCID iD: 0000-0002-4068-8431

к.м.н., доц. каф. факультетской хирургии №2

Russian Federation, Moscow

N. P. Mishchenko

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: nataschamishchenko@yandex.ru
ORCID iD: 0000-0002-4205-7748

клин. ординатор каф. факультетской хирургии №2

Russian Federation, Moscow

E. G. Gandybina

Sechenov First Moscow State Medical University (Sechenov University)

Email: nataschamishchenko@yandex.ru
ORCID iD: 0000-0002-6765-5154

к.м.н., доц. каф. факультетской хирургии №2

Russian Federation, Moscow

References

  1. Fernandes AS, Lobo S, Sandes AR, et al. Vitamin D-dependent rickets: a resurgence of the rachitic lung in the 21st century. BMJ Case Rep. 2015 Oct 19;2015. pii: bcr2015212639. doi: 10.1136/bcr-2015-212639
  2. Dedicoat M. Where next with for vitamin D and tuberculosis? Int J Tuberc Lung Dis. 2020 Mar 1;24(3):265. doi: 10.5588/ijtld.20.0045
  3. Wang Y, Shi C, Yang Z, et al. Vitamin D deficiency and clinical outcomes related to septic shock in children with critical illness: a systematic review. Eur J Clin Nutr. 2019 Aug;73(8):1095-1101. doi: 10.1038/s41430-018-0249-0
  4. Sundaram ME, Coleman LA. Vitamin D and influenza. Adv Nutr. 2012;3(4):517-25. doi: 10.3945/an.112.002162
  5. Пигарова Е.А., Плещева А.В., Дзеранова Л.К. Влияние витамина D на иммунную систему. Иммунология. 2015; 36 (1): 62-6 [Pigarova EA, Pleshcheva AV, Dzeranova LK. The effect of vitamin D on the immune system. Immunology. 2015;36(1):62-6 (In Russ.)].
  6. Koivisto O, Hanel A, Carlberg C. Key Vitamin D Target Genes with Functions in the Immune System. Nutrients. 2020 Apr 19;12(4). pii: E1140. doi: 10.3390/nu12041140
  7. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;10.1056/NEJMoa2001017. doi: 10.1056/NEJMoa2001017
  8. Zhong NS, Zheng BJ, Li YM, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet. 2003;362:1353-8. doi: 10.1016/s0140-6736(03)14630-2
  9. Assiri A, McGeer A, Perl TM, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369:407-16. doi: 10.1056/NEJMoa1306742
  10. Song Z, Xu Y, Bao L, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses 2019;11. doi: 10.3390/v11010059
  11. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23:130-7. doi: 10.1111/resp.13196
  12. Britten R. The incidence of epidemic influenza, 1918–19. Public Health Rep. 1932;47:303-39.
  13. Лещенко И.В., Кривоногов А.В. Особенности течения пневмонии при пандемическом гриппе А/Н1N1/09. Пульмонология. 2011;6:62-8 [Leshchenko IV, Krivonogov AV. Features of the course of pneumonia in pandemic influenza A/H1N1/09. Pulmonology. 2011;6:62-8 (In Russ.)]. doi: 10.18093/0869-0189-2011-0-6-62-68
  14. Плещева А.В., Пигарова Е.А., Дзеранова Л.К. Витамин D и метаболизм: факты, мифы и предубеждения. Ожирение и метаболизм. 2012;9(2):33-42. [Pleshcheva AV, Pigarova EA, Dzeranova LK. Vitamin D and metabolism: facts, myths and prejudices. Obesity and metabolism. 2012;9(2):33-42 (In Russ.)]. doi: 10.14341/omet2012233-42
  15. Пигарова Е.А., Мазурина Н.В., Трошина Е.А. Витамин D в профилактике костных и метаболических нарушений. Consilium Medicum. 2019;21(4):84-90 [Pigarova EA, Mazurina NV, Troshina EA. Vitamin D in the prevention of bone and metabolic disorders. Consilium Medicum. 2019;21(4):84-90 (In Russ.)]. doi: 10.26442/20751753.2019.4.190342
  16. Пигарова Е.А., Поваляева А.А., Дзеранова Л.К., Рожинская Л.Я. Роль витамина D для профилактики и лечения рахита у детей. Педиатрия. Consilium Medicum. 2019;3:40-5. [Pigarova EA, Povalyaeva AA, Dzeranova LK, Rozhinskaya LYa. The role of vitamin D in the prevention and treatment of rickets in children. Pediatrics. Consilium Medicum. 2019;3:40-5 (In Russ.)]. doi: 10.26442/20751753.2019.4.190342
  17. Beard JA, Bearden A, Striker R. Vitamin D and the anti-viral state. J Clin Virol. 2011;50:194-200. doi: 10.1016/j.jcv.2010.12.006
  18. Gruber-Bzura BM. Vitamin D and Influenza – Prevention or Therapy? Int J Mol Sci. 2018;19(8):2419. doi: 10.3390/ijms19082419
  19. Greiller CL, Martineau AR. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients. 2015;7:4240-70. doi: 10.3390/nu7064240
  20. Odroważ-Sypniewska G, Karczmarewicz E, Paprotny Ł, Płudowski P. 3-epi-25(OH)D – A new metabolite, potential biological function, interference in laboratory assays. Stand Med Pediatr. 2012;9:680-6.
  21. Пигарова Е.А., Петрушкина А.А. Неклассические эффекты витамина D. Остеопороз и остеопатии. 2017;20(3):90-101 [Pigarova EA, Petrushkina AA. Nonclassical effects of vitamin D. Osteoporosis and bone diseases. 2017;20(3):90-101 (In Russ.)].
  22. Christakos S, Hewison M, Gardner DG, et al. Vitamin D: Beyond bone. Ann N Y Acad Sci. 2013;1287:45-58. doi: 10.1111/nyas.12129
  23. Moukayed M, Grant WB. Molecular link between vitamin D and cancer prevention. Nutrients. 2013;5:3993-4021. doi: 10.3390/nu5103993
  24. Петрушкина А.А., Пигарова Е.А., Рожинская Л.Я. Эпидемиология дефицита витамина D в Российской Федерации. Остеопороз и остеопатии. 2018;21(3):15-20 [Petrushkina AA, Pigarova EA, Rozhinskaya LYa. Epidemiology of Vitamin D Deficiency in the Russian Federation. Osteoporosis and bone diseases. 2018;21(3):15-20 (In Russ.)]. doi: 10.14341/osteo10038
  25. Пигарова Е.А. Основные положения клинических рекомендаций Российской Ассоциации Эндокринологов «Дефицит витамина D у взрослых: диагностика, лечение и профилактика». Остеопороз и остеопатии. 2015;18(2):29-32 [Pigarova EA. The main provisions of the clinical recommendations of the Russian Association of Endocrinologists «Vitamin D deficiency in adults: diagnosis, treatment and prevention». Osteoporosis and bone diseases. 2015;18(2):29-32 (In Russ.)].
  26. Cashman KD, Sheehy T, O’Neill CM. Is vitamin D deficiency a public health concern for low middle income countries? A systematic literature review. Eur J Nutr. doi: 10.1007/s00394-018-1607-3
  27. Papadimitriou DT. The Big Vitamin D Mistake. J Prev Med Public Health. 2017 Jul;50(4):278-81. doi: 10.3961/jpmph.16.111
  28. Пигарова Е.А., Поваляева А.А., Дзеранова Л.К., Рожинская Л.Я. Роль витамина D в профилактике и лечении остеопороза – новый взгляд на известную проблему. Рус. мед. журнал. Медицинское обозрение. 2019;3(10-2):102-6 [Pigarova EA, Povalyaeva AA, Dzeranova LK, Rozhinskaya LYa. The role of vitamin D in the prevention and treatment of osteoporosis is a new look at a known problem. Rus honey. magazine. Medical Review. 2019;3(10-2):102-6 (In Russ.)].
  29. Kara M, Ekiz T, Ricci V, et al. ‘Scientific Strabismus’ or Two Related Pandemics: COVID-19 & Vitamin D Deficiency. Br J Nutr. 2020;1-20. doi: 10.1017/S0007114520001749
  30. Jolliffe DA, Griffiths CJ, Martineau AR. Vitamin D in the prevention of acute respiratory infection: systematic review of clinical studies. J Steroid Biochem Mol Biol. 2013;136:321-9. doi: 10.1016/j.jsbmb.2012.11.017
  31. Schwalfenberg GK. A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Mol Nutr Food Res. 2011;55:96-108. doi: 10.1002/mnfr.201000174
  32. Laaksi I. Vitamin D and respiratory infection in adults. Proc Nutr Soc. 2012;71:90-7. doi: 10.1017/S0029665111003351
  33. Rossi GA, Fanous H, Colin AA. Viral strategies predisposing to respiratory bacterial superinfections. Pediatr. Pulmonol. 2020. doi: 10.1002/ppul.24699
  34. Agier J, Efenberger M, Brzezinska-Blaszczyk E. Cathelicidin impact on inflammatory cells. Cent Eur J Immunol. 2015;40:225-35. doi: 10.5114/ceji.2015.51359
  35. Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12(4):988. doi: 10.3390/nu12040988
  36. Herr C, Shaykhiev R, Bals R. The role of cathelicidin and defensins in pulmonary inflammatory diseases. Expert Opin Biol Ther. 2007;7:1449-61. doi: 10.1517/14712598.7.9.1449
  37. Szymczak I, Pawliczak R. The active metabolite of vitamin D3 as a potential immunomodulator. Scand J Immunol. 2015;83:83-91. doi: 10.1111/sji.12403
  38. Bikle DD. Extraskeletal actions of vitamin D. Ann N Y Acad Sci. 2016;1376:29-51. doi: 10.1111/nyas.13219
  39. Greiller CL, Martineau AR. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients. 2015;7:4240-70. doi: 10.3390/nu7064240
  40. Handel AE, Sandve GK, Disanto G, et al. Vitamin D receptor ChIP-seq in primary CD4+ cells: relationship to serum 25-hydroxyvitamin D levels and autoimmune disease. BMC Med. 2013;11:163. doi: 10.1186/1741-7015-11-163
  41. Kongsbak M, von Essen MR, Levring TB, et al. Vitamin D-binding protein controls T cell responses to vitamin D. BMC Immunol. 2014;15:35. doi: 10.1186/s12865-014-0035-2
  42. Ooi JH, McDaniel KL, Weaver V, Cantorna MT. Murine CD8+ T cells but not macrophages express the vitamin D 1alpha-hydroxylase. J Nutr Biochem. 2014;25:58-65. doi: 10.1016/j.jnutbio.2013.09.003
  43. Lee MD, Lin CH, Lei WT, et al. Does Vitamin D Deficiency Affect the Immunogenic Responses to Influenza Vaccination? A Systematic Review and Meta-Analysis. Nutrients. 2018;10(4):409. doi: 10.3390/nu10040409
  44. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16:69. doi: 10.1186/s12985-019-1182-0
  45. Ramos-Martínez E, López-Vancell MR, Fernández de Córdova-Aguirre JC, et al. Reduction of respiratory infections in asthma patients supplemented with vitamin D is related to increased serum IL-10 and IFNγ levels and cathelicidin expression. Cytokine. 2018;108:239-46. doi: 10.1016/j.cyto.2018.01.001
  46. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5
  47. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7
  48. Available from: https://www.bbc.com/russian/features-52839688
  49. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970-5. doi: 10.1073/pnas.2005615117
  50. Parlak E, Ertürk A, Çağ Y, et al. The effect of inflammatory cytokines and the level of vitamin D on prognosis in Crimean-Congo hemorrhagic fever. Int J Clin Exp Med. 2015;8:18302-10.
  51. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. doi: 10.1016/S2213-2600(20)30076-X
  52. Shi Y, Liu T, Yao LI, et al. Chronic vitamin D deficiency induces lung fibrosis through activation of the renin-angiotensin system. Sci Rep. 2017;7(1):3312. doi: 10.1038/s41598-017-03474-6
  53. Hanff TC, Harhay MO, Brown TS, et al. Is there an association between COVID-19 mortality and the renin-angiotensin system – a call for epidemiologic investigations. Clin Infect Dis. 2020. doi: 10.1093/cid/ciaa329
  54. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061. doi: 10.1001/jama.2020.1585
  55. Mohammad S, Mishra A, Ashraf MZ. Emerging role of vitamin D and its associated molecules in pathways related to pathogenesis of thrombosis. Biomolecules. 2019;9(11):649. doi: 10.3390/biom9110649
  56. Laird E, Rhodes J, Kenny RA. Vitamin D and Inflamation; potential implications for severity of Covid-19. Ir Med J. 2020;113(5):P81.
  57. Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Med Drug Discov. 2020;100041. doi: 10.1016/j.medidd.2020.100041
  58. D’Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):E1359. doi: 10.3390/nu12051359
  59. Alipio M. Vitamin D Supplementation Could Possibly Improve Clinical Outcomes of Patients Infected with Coronavirus-2019 (COVID-19) (April 9, 2020). https://ssrn.com/abstract=3571484 or http://dx.doi.org/ 10.2139/ssrn.3571484
  60. Raharusun P, Sadiah P, Budiarti C, et al. Patterns of COVID-19 Mortality and Vitamin D: An Indonesian Study (April 26, 2020). https://ssrn.com/abstract=3585561 or http://dx.doi.org/10.2139/ssrn.3585561
  61. Jakovac H. COVID-19 and vitamin D-Is there a link and an opportunity for intervention? Am J Physiol Endocrinol Metab. 2020;318(5):E589. doi: 10.1152/ajpendo.00138.2020
  62. Лесняк О.М., Никитинская О.А., Торопцова Н.В. и др. Профилактика, диагностика и лечение дефицита витамина D и кальция у взрослого населения России и пациентов с остеопорозом (по материалам подготовленных клинических рекомендаций). Научно-практическая ревматология. 2015;53(4):403-8. [Lesnyak OM, Nikitinskaya OA, Toroptsova NV, et al. The prevention, diagnosis, and treatment of vitamin d and calcium deficiencies in the adult population of russia and in patients with osteoporosis (according to the materials of prepared clinical recommendations). Scientific and practical rheumatology. 2015;53(4):403-8 (In Russ.)]. doi: 10.14412/1995-4484-2015-403-408
  63. Пигарова Е.А., Рожинская Л.Я., Белая Ж.Е. и др. Клинические рекомендации Российской ассоциации эндокринологов по диагностике, лечению и профилактике дефицита витамина D у взрослых. Проблемы эндокринологии. 2016;62(4):60-84 [Pigarova EA, Rozhinskaya LYa, Belaya ZhE, et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problems of endocrinology. 2016;62(4):60-84 (In Russ.)]. doi: 10.14341/probl201662460-84
  64. Heaney RP, Davies KM, Chen TC, et al. Human serum 25-hydroxychole-calciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr. 2003;77(1):204-10. doi: 10.1093/ajcn/77.1.204

Copyright (c) 2020 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies