Gene therapy of type 2 diabetes mellitus: state of art


Cite item

Full Text

Abstract

Type 2 diabetes mellitus (T2DM) and other metabolic diseases are essential links in the structure of morbidity and mortality in the modern world. The accepted strategy for the correction of T2DM and insulin resistance is drug therapy aimed at delivering insulin from the outside, stimulating the secretion of own insulin and reducing the concentration of blood glucose. However, modern studies demonstrate a great potential for the use of gene therapy approaches for the correction of T2DM and insulin resistance. In the present review, the main variants of plasmid gene therapy of T2DM using the genes of adiponectin and type 1 glucagon-like peptide, as well as the main variants of viral gene therapy of T2DM using the genes of type 1 and leptin are considered. T2DM gene therapy is currently not ready to enter into routine clinical practice, but, subject to improvements in delivery systems, it can be a powerful link in combination therapy for diabetes.

About the authors

Yu S Stafeev

National Medical Research Centre for Cardiology of the Ministry of Health of the Russian Federation; M.V. Lomonosov Moscow State University

Email: yuristafeev@gmail.com
м.н.с. лаб. ангиогенеза НИИЭК ФГБУ НМИЦ кардиологии, аспирант кафедры биохимии и молекулярной медицины факультета фундаментальной медицины ФГБОУ ВО «МГУ им. М.В. Ломоносова» Moscow, Russia

M Yu Menshikov

National Medical Research Centre for Cardiology of the Ministry of Health of the Russian Federation

д.б.н., в.н.с. лаб. ангиогенеза НИИЭК ФГБУ «НМИЦ кардиологии» Moscow, Russia

Ye V Parfyonova

National Medical Research Centre for Cardiology of the Ministry of Health of the Russian Federation; M.V. Lomonosov Moscow State University

д.м.н., зав. лаб. ангиогенеза и директор НИИЭК «ФГБУ НМИЦ кардиологии», зав. лаб. постгеномных технологий в медицине факультета фундаментальной медицины ФГБОУ ВО «МГУ им. М.В. Ломоносова» Moscow, Russia

References

  1. Naldini L. Medicine. A comeback for gene therapy. Science. 2009;326:805-6. doi: 10.1126/science.1181937
  2. Herzog R.W, Cao O, Srivastava A. Two decades of clinical gene therapy - success is finally mounting. Discov Med. 2010;9:105-11.
  3. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342:1432-3. doi: 10.1126/science.342.6165.1432
  4. Williams P.D, Kingston P.A. Plasmid - mediated gene therapy for cardiovascular disease. Cardiovasc Res. 2011;91:565-76. doi: 10.1093/cvr/cvr197
  5. Laitinen M, Pakkanen T, Donetti E, Baetta R, Luoma J, Lehtolainen P, Viita H, Agrawal R, Miyanohara A, Friedmann T, Risau W, Martin J.F, Soma M, Ylä-Herttuala S. Gene transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the plasmid - liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses. Hum Gene Ther. 1997;8:1645-50. doi: 10.1089/hum.1997.8.14-1645
  6. Edwards C.M. GLP-1: target for a new class of antidiabetic agents? J R Soc Med. 2004;97:270-4.
  7. Herzberg-Schäfer S, Heni M, Stefan N, Häring H.U, Fritsche A. Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia. Diabetes Obes Metab. 2012;14:85-90. doi: 10.1111/j.1463-1326.2012.01648.x
  8. Domínguez Avila J.A, Rodrigo García J, González Aguilar G.A, de la Rosa L.A. The antidiabetic mechanisms of polyphenols related to increased glucagon - like peptide-1 (GLP1) and insulin signaling. Molecules. 2017;22:E933. doi: 10.3390/molecules22060903
  9. Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, Shimomura I. Induction of adiponectin, a fat - derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes. 2003;52:1655-63. doi: 10.2337/diabetes.52.7.1655
  10. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116:1784-92. doi: 10.1172/JCI29126
  11. Fisman E.Z, Tenenbaum A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol. 2014;13:103. doi: 10.1186/1475-2840-13-103
  12. Choi S, Oh S, Lee M, Kim S.W. Glucagon - like peptide-1 plasmid construction and delivery for the treatment of type 2 diabetes. Mol Ther. 2005;12:885-91. doi: 10.1016/j.ymthe.2005.03.039
  13. Parsons G.B, Souza D.W, Wu H, Yu D, Wadsworth S.G, Gregory R.J, Armentano D. Ectopic expression of glucagon - like peptide 1 for gene therapy of type II diabetes. Gene Ther. 2007;14:38-48. doi: 10.1038/sj.gt.3302842
  14. Jean M, Alameh M, Buschmann M.D, Merzouki A. Effective and safe gene - based delivery of GLP-1 using chitosan/plasmid-DNA therapeutic nanocomplexes in an animal model of type 2 diabetes. Gene Ther. 2011;18:807-16. doi: 10.1038/gt.2011.25
  15. Vilsboll T. Liraglutide: a new treatment for type 2 diabetes. Drugs Today (Barc.). 2009;45:101-13. doi: 10.1358/dot.2009.45.2.1336104
  16. Verges B, Bonnard C, Renard E. Beyond glucose lowering: glucagon - like peptide-1 receptor agonists, body weight and the cardiovascular system. Diabetes Metab. 2011;37:477-88. doi: 10.1016/j.diabet.2011.07.001
  17. Garber A.J. Liraglutide in oral antidiabetic drug combination therapy. Diabetes Obes Metab. 2012;14:13-9. doi: 10.1111/j.1463-1326.2012.01574.x
  18. Kim P.H, Lee V, Nam K, Kim S.W. Enhanced incretin effects of exendin-4 expressing chimeric plasmid based on two - step transcription amplification system with dendritic bioreducible polymer for the treatment of type 2 diabetes. J Gene Ther. 2013;1:7-15. doi: 10.13188/2381-3326.1000002
  19. Park J.H, Lee M, Kim S.W. Non - viral adiponectin gene therapy into obese type 2 diabetic mice ameliorates insulin resistance. J Control Release. 2006;114:118-25. doi: 10.1016/j.jconrel.2006.05.008
  20. Nan M.H, Park J.S, Myung C.S. Construction of adiponectin - encoding plasmid DNA and gene therapy of non - obese type 2 diabetes mellitus. J Drug Target. 2010;18:67-77. doi: 10.3109/10611860903225719
  21. Kandasamy A.D, Sung M.M, Boisvenue J.J, Barr A.J, Dyck J.R. Adiponectin gene therapy ameliorates high - fat, high - sucrose diet - induced metabolic perturbations in mice. Nutr Diabetes. 2012;2:e45. doi: 10.1038/nutd.2012.18
  22. Halenova T, Savchuk O, Ostapchenko L, Chursov A, Fridlyand N, Komissarov A, Venanzi F, Kolesnikov I, Sufianov A, Sherman M, Gabai L, Shneider A. P62 plasmid can alleviate diet - induced obesity and metabolic dysfunctions. Oncotarget. 2017;8:56030-40. doi: 10.18632/oncotarget.19840
  23. Jimenez V, Muñoz S, Casana E, Mallol C, Elias I, Jambrina C, Ribera A, Ferre T, Franckhauser S, Bosch F. In vivo adeno - associated viral vector - mediated genetic engineering of white and brown adipose tissue in adult mice. Diabetes. 2013;62:4012-22. doi: 10.2337/db13-0311
  24. O'Neill S.M, Hinkle C, Chen S.J, Sandhu A, Hovhannisyan R, Stephan S, Lagor W.R, Ahima R.S, Johnston J.C, Reilly M.P. Targeting adipose tissue via systemic gene therapy. Gene Ther. 2014;21:653-61. doi: 10.1038/gt.2014.38
  25. Gomez-Banoy N, Lo J.C. Genetic manipulation with viral vectors to assess metabolism and adipose tissue function. Meth Mol Biol. 2017;1566:109-24. doi: 10.1007/978-1-4939-6820-6_11
  26. Riedel M.J, Gaddy D.F, Asadi A, Robbins P.D, Kieffer T.J. DsAAV8-mediated expression of glucagon - like peptide-1 in pancreatic beta - cells ameliorates streptozotocin - induced diabetes. Gene Ther. 2010;17:171-80. doi: 10.1038/gt.2009.143
  27. Lee Y, Kwon M.K, Kang E.S, Park Y.M, Choi S.H, Ahn C.W, Kim K.S, Park C.W, Cha B.S, Kim S.W, Sung J.K, Lee E.J, Lee H.C. Adenoviral vector - mediated glucagon - like peptide 1 gene therapy improves glucose homeostasis in Zucker diabetic fatty rats. J Gene Med. 2008;10:260-8. doi: 10.1002/jgm.1153
  28. Tasyurek H.M, Altunbas H.A, Balci M.K, Griffith T.S, Sanlioglu S. Therapeutic potential of lentivirus - mediated glucagon - like peptide-1 gene therapy for diabetes. Hum Gene Ther. 2018;29:802-15. doi: 10.1089/hum.2017.180
  29. Kojima S, Asakawa A, Amitani H, Sakoguchi T, Ueno N, Inui A, Kalra S.P. Central leptin gene therapy, a substitute for insulin therapy to ameliorate hyperglycemia and hyperphagia, and promote survival in insulin - deficient diabetic mice. Peptides. 2009;30:962-6. doi: 10.1016/j.peptides.2009.01.007
  30. Wang Y, Asakawa A, Inui A, Kosai K. Leptin gene therapy in the fight against diabetes. Expert Opin Biol Ther. 2010;10:1405-14. doi: 10.1517/14712598.2010.512286
  31. Lee M.W, Odegaard J.I, Mukundan L, Qiu Y, Molofsky A.B, Nussbaum J.C, Yun K, Locksley R.M, Chawla A. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell. 2015;160:74-87. doi: 10.1016/j.cell.2014.12.011
  32. Stafeev I.S, Michurina S.S, Podkuychenko N.V, Vorotnikov A.V, Menshikov M.Y, Parfyonova Ye.V. Interleukin-4 restores insulin sensitivity in lipid - induced insulin resistant adipocytes. Biochemistry (Mosc). 2018;83:498-506. doi: 10.1134/S0006297918050036
  33. Michurina S, Stafeev I, Beloglazova I, Molokotina Y, Shevchenko E, Vorotnikov A, Menshikov M, Parfyonova Ye. Lentiviral transfer of interleukin 4 gene to 3T3-L1 adipocytes prevents development of lipid - induced insulin resistance. Eur Heart J. 2018;39:492. doi: 10.1093/eurheartj/ehy565.P2524

Copyright (c) 2019 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies