Role of intestinal microbiota in the formation of non-alcoholic fatty liver disease


Cite item

Full Text

Abstract

The article provides an overview of modern views on the role of intestinal microbiota in the formation of non-alcoholic fatty liver disease. The general questions of the pathogenesis of the syndrome of excessive bacterial growth in the intestine, the participation of opportunistic microflora, the deficit of representatives of normal microflora, changes in the species composition of bile acids in the pathogenesis of nonalcoholic fatty liver disease are considered.

About the authors

V A Akhmedov

Omsk State Medical University of the Ministry of Health of the Russian Federation

Email: v_akhmedov@mail.ru
д.м.н., проф., зав. каф. медицинской реабилитации дополнительного профессионального образования Omsk, Russia

O V Gaus

Omsk State Medical University of the Ministry of Health of the Russian Federation

к.м.н, ассистент каф. факультетской терапии, профессиональных болезней Omsk, Russia

References

  1. Bellentani S. The epidemiology of non - alcoholic fatty liver disease. Liver Int. 2017;37(Suppl. 1):81-4. doi: 10.1111/liv.13299
  2. Bellentani S, Scaglioni F, Marino M, Bedogni G. Epidemiology of non - alcoholic fatty liver disease. Dig Dis. 2010;28(1):155-61. doi: 10.1159/000282080
  3. Zak-Golab A, Olszanecka-Glinianowicz M, Kocelak P, Chudek J. The role of gut microbiota in the pathogenesis of obesity. Post Hig Med Dosw Postepy Hig Med Dosw (Online). 2014;68:84-90. doi: 10.5604/17322693.1086419
  4. Balmer M.L, Slack E, de Gottardi A, Lawson M.A, Hapfelmeier S, Miele L, Grieco A, van Vlierberghe H, Fahrner R, Patuto N, Bernsmeier C, Ronchi F, Wyss M, Stroka D, Dickgreber N, Heim M.H, Mc Coy K.D, Macpherson A.J. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med. 2014;6(237):237-66. doi: 10.1126/scitranslmed.3008618
  5. Luther J, Garber J.J, Khalili H, Dave M, Bale S.S, Jindal R, Motola D.L, Luther S, Bohr S, Jeoung S.W, Deshpande V, Singh G, Turner J.R, Yarmush M.L, Chung R.T, Patel S. Hepatic Injury in Nonalcoholic Steatohepatitis Contributes to Altered Intestinal Permeability. Cell Mol Gastroenterol Hepatol. 2015;1(2):222-32. doi: 10.1016/ j.jcmgh.2015.01.001
  6. Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Mascianà R, Forgione A, Gabrieli M.L, Perotti G, Vecchio F.M, Rapaccini G, Gasbarrini G, Day C.P, Grieco A. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49(6):1877-87. doi: 10.1002/hep.22848
  7. Wong V.W, Wong G.L, Chan H.Y, Yeung D.K, Chan R.S, Chim A.M, Chan C.K, Tse Y.K, Woo J, Chu W.C, Chan H.L. Bacterial endotoxin and non - alcoholic fatty liver disease in the general population: a prospective cohort study. Aliment Pharmacol Ther. 2015;42(6):731-40. doi: 10.1111/apt.13327
  8. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy C.D, Seed P.C, Rawls J.F, David L.A, Hunault G, Oberti F, Calès P, Diehl A.M. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(3):764-75. doi: 10.1002/hep.28356
  9. Bäckhed F, Ding H, Wang T, Hooper L.V, Koh G.Y, Nagy A, Semenkovich C.F, Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718-23. doi: 10.1073/pnas.0407076101
  10. Bäckhed F, Manchester J.K, Semenkovich C.F, Gordon J.I. Mechanisms underlying the resistance to diet - induced obesity in germ - free mice. Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):979-84. doi: 10.1073/pnas.0605374104
  11. Jiang C, Xie C, Li F, Zhang L, Nichols R.G, Krausz K.W, Cai J, Qi Y, Fang Z.Z, Takahashi S, Tanaka N, Desai D, Amin S.G, Albert I, Patterson A.D, Gonzalez F.J. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest. 2015;125(1):386-402. doi: 10.1172/JCI76738
  12. Sayin S.I, Wahlström A, Felin J, Jäntti S, Marschall H.U, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro - beta - muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225-35. doi: 10.1016/j.cmet.2013.01.003
  13. Kersten S, Mandard S, Tan N.S, Escher P, Metzger D, Chambon P, Gonzalez F.J, Desvergne B, Wahli W. Characterization of the fasting - induced adipose factor FIAF, a novel peroxisome proliferator - activated receptor target gene. J Biol Chem. 2000;275(37):28488-93. doi: 10.1074/jbc.M004029200
  14. Romano K.A, Vivas E.I, Amador-Noguez D, Rey F.E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulationof the proatherogenic metabolite trimethylamine-N-oxide. MBio. 2015;6(2):e02481. doi: 10.1128/mBio.02481-14
  15. Dumas M.E, Barton R.H, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon J.C, Mitchell S.C, Holmes E, Mc Carthy M.I, Scott J, Gauguier D, Nicholson J.K. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin - resistant mice. Proc Natl Acad Sci U S A. 2006;103(33):12511-6. doi: 10.1073/pnas.0601056103
  16. Bennett B.J, de Aguiar Vallim T.Q, Wang Z, Shih D.M, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R, Edwards P.A, Hazen S.L, Lusis A.J. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex geneticand dietary regulation. Cell Metab. 2013 Jan 8;17(1):49-60. doi: 10.1016/j.cmet.2012.12.011
  17. Koeth R.A, Wang Z, Levison B.S, Buffa J.A, Org E, Sheehy B.T, Britt E.B, Fu X, Wu Y, Li L, Smith J.D, Di-Donato J.A, Chen J, Li H, Wu G.D, Lewis J.D, Warrier M, Brown J.M, Krauss R.M, Tang W.H, Bushman F.D, Lusis A.J, Hazen S.L. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576-85. doi: 10.1038/nm.3145
  18. Chen Y.M, Liu Y, Zhou R.F, Chen X.L, Wang C, Tan X.Y, Wang L.J, Zheng R.D, Zhang H.W, Ling W.H, Zhu H.L. Associations of gut - flora - dependent metabolite trimethylamine-N-oxide, betaine and choline with non - alcoholic fatty liver disease in adults. Sci Rep. 2016;6:19076. doi: 10.1038/srep19076
  19. Tang W.H, Hazen S.L. Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl Res. 2017;179:108-15. doi: 10.1016/ j.trsl.2016.07.007
  20. Takaki A, Kawai D, Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non - alcoholic steatohepatitis (NASH). Int J Mol Sci. 2013;14(10):20704-28. doi: 10.3390/ijms141020704
  21. Valentini M, Piermattei A, Di Sante G, Migliara G, Delogu G, Ria F. Immunomodulation by gut microbiota: role of Toll - like receptor expressed by T cells. J Immunol Res. 2014;2014:586939. doi: 10.1155/2014/586939
  22. Kim J.J, Sears D.D. TLR4 and Insulin Resistance. Gastroenterol Res Pract. 2010;2010:212563. doi: 10.1155/2010/212563
  23. Neal M.D, Leaphart C, Levy R, Prince J, Billiar T.R, Watkins S, Li J, Cetin S, Ford H, Schreiber A, Hackam D.J. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinalbarrier. J Immunol. 2006;176(5):3070-9.
  24. Wang Y, Ghoshal S, Ward M, de Villiers W, Woodward J, Eckhardt E. Chylomicrons promote intestinal absorption and systemic dissemination of dietary antigen(ovalbumin) in mice. PLoS One. 2009;4(12):e8442. doi: 10.1371/journal.pone.0008442
  25. Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palù G, Martines D. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2007;292(2):G518-525.
  26. Beutler B, Hoebe K, Du X, Ulevitch R.J. How we detect microbes and respond to them: the Toll - like receptors and their transducers. J Leukoc Biol. 2003;74(4):479-85. doi: 10.1189/jlb.0203082
  27. Ruiz A.G, Casafont F, Crespo J, Cayón A, Mayorga M, Estebanez A, Fernadez-Escalante J.C, Pons-Romero F. Lipopolysaccharide - binding protein plasma levels and liver TNF-alpha gene expression in obesepatients: evidence for the potential role of endotoxin in the pathogenesis of non - alcoholicsteatohepatitis. Obes Surg. 2007;17(10):1374-80. doi: 10.1007/s11695-007-9243-7
  28. Brun P, Castagliuolo I, Pinzani M, Palù G, Martines D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellatecells. Am J Physiol Gastrointest Liver Physiol. 2005;289(3):G571-8. doi: 10.1152/ajpgi.00537.2004
  29. Paik Y.H, Schwabe R.F, Bataller R, Russo M.P, Jobin C, Brenner D.A. Toll - like receptor mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology. 2003;37(5):1043-55. doi: 10.1053/jhep.2003.50182
  30. Arroyo-Espliguero R, Avanzas P, Jeffery S, Kaski J.C. CD14 and toll - like receptor 4: a link between infection and acute coronary events? Heart. 2004;90(9):983-8. doi: 10.1136/hrt.2002.001297
  31. Curtiss L.K, Tobias P.S. Emerging role of Toll - like receptors in atherosclerosis. J Lipid Res. 2009;50 Suppl:340-5. doi: 10.1194/jlr.R800056-JLR200
  32. Purohit V, Bode J.C, Bode C, Brenner D.A, Choudhry M.A, Hamilton F, Kang Y.J, Keshavarzian A, Rao R, Sartor R.B, Swanson C, Turner J.R. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol. 2008;42(5):349-61. doi: 10.1016/j.alcohol.2008.03.131
  33. Setshedi M, Wands J.R, Monte S.M. Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev. 2010;3(3):178-85. doi: 10.4161/oxim.3.3.12288
  34. Su G.L. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol. 2002;283(2):G256-265. doi: 10.1152/ajpgi.00550.2001
  35. Gustot T, Lemmers A, Moreno C, Nagy N, Quertinmont E, Nicaise C, Franchimont D, Louis H, Devière J, Le Moine O. Differential liver sensitization to Toll - like receptor pathways in mice with alcoholic fatty liver. Hepatology. 2006;43(5):989-1000. doi: 10.1002/hep.21138
  36. Nassir F, Ibdah J.A. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(5):8713-42. doi: 10.3390/ijms15058713
  37. Fritz R, Bol J, Hebling U, Angermüller S, Völkl A, Fahimi H.D, Mueller S. Compartment - dependent management of H(2)O(2) by peroxisomes. Free Radic Biol Med. 2007;42(7):1119-29. doi: 10.1016/j.freeradbiomed.2007.01.014
  38. Rolo A.P, Teodoro J.S, Palmeira C.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 2012;52(1):59-69. doi: 10.1016/j.freeradbiomed.2011.10.003
  39. Mardinoglu A, Shoaie S, Bergentall M, Ghaffari P, Zhang C, Larsson E, Bäckhed F, Nielsen J. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol. 2015;11(10):834. doi: 10.15252/msb.20156487
  40. Morgan B, Ezeriņa D, Amoako T.N, Riemer J, Seedorf M, Dick T.P. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol. 2013;9(2):119-25. doi: 10.1038/nchembio.1142
  41. Davila A.M, Blachier F, Gotteland M, Andriamihaja M, Benetti P.H, Sanz Y, Tomé D. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res. 2013;68(1):95-107. doi: 10.1016/j.phrs.2012.11.005
  42. Brunt E.M, Kleiner D.E, Wilson L.A, Belt P, Neuschwander-Tetri BA; NASH Clinical Research Network (CRN). Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology. 2011;53(3):810-20. doi: 10.1002/hep.24127
  43. Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R, Mastrojeni S, Malaguarnera G, Mistretta A, Li Volti G, Galvano F. Bifidobacterium longum with fructo - oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci. 2012;57(2):545-53. doi: 10.1007/s10620-011-1887-4
  44. Ren T, Huang C, Cheng M. Dietary blueberry and bifidobacteria attenuate nonalcoholic fatty liver disease in rats by affecting SIRT1-mediated signaling pathway. Oxid Med Cell Longev. 2014;2014:469059. doi: 10.1155/2014/469059
  45. Nobili V, Putignani L, Mosca A, Chierico F.D, Vernocchi P, Alisi A, Stronati L, Cucchiara S, Toscano M, Drago L. Bifidobacteria and lactobacilli in the gut microbiome of children with non - alcoholic fatty liverdisease: which strains act as health players? Arch Med Sci. 2018;14(1):81-7. doi: 10.5114/aoms.2016.62150
  46. Sohn W, Jun D.W, Lee K.N, Lee H.L, Lee O.Y, Choi H.S, Yoon B.C. Lactobacillus paracasei Induces M2-Dominant Kupffer Cell Polarization in a Mouse Model of Nonalcoholic Steatohepatitis. Dig Dis Sci. 2015;60(11):3340-50. doi: 10.1007/s10620-015-3770-1
  47. Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y, Li L. Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non - alcoholic Fatty Liver Disease. Sci Rep. 2016;6:32002. doi: 10.1038/srep32002
  48. Raman M, Ahmed I, Gillevet P.M, Probert C.S, Ratcliffe N.M, Smith S, Greenwood R, Sikaroodi M, Lam V, Crotty P, Bailey J, Myers R.P, Rioux K.P. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11(7):868-75. doi: 10.1016/j.cgh.2013.02.015
  49. Del Chierico F, Nobili V, Vernocchi P, Russo A, Stefanis C, Gnani D, Furlanello C, Zandonà A, Paci P, Capuani G, Dallapiccola B, Miccheli A, Alisi A, Putignani L. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiledby an integrated meta - omics - based approach. Hepatology. 2017;65(2):451-64. doi: 10.1002/hep.28572
  50. Ohland C.L, Macnaughton W.K. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 2010;298(6):807-19. doi: 10.1152/ajpgi.00243.2009
  51. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos N.A, Donus C, Hardt P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190-5. doi: 10.1038/oby.2009.167
  52. Elshaghabee F.M, Bockelmann W, Meske D, de Vrese M, Walte H.G, Schrezenmeir J, Heller K.J. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions. Front Microbiol. 2016;7:47. doi: 10.3389/fmicb.2016.00047
  53. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, de Roos P, Liu H, Cross J.R, Pfeffer K, Coffer P.J, Rudensky A.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451-5. doi: 10.1038/nature12726
  54. Li J, Sung C.Y, Lee N, Ni Y, Pihlajamäki J, Panagiotou G, El-Nezami H. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A. 2016;113(9):1306-15. doi: 10.1073/pnas.1518189113
  55. Shin N.R, Lee J.C, Lee H.Y, Kim M.S, Whon T.W, Lee M.S, Bae J.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet - induced obese mice. Gut. 2014;63(5):727-35. doi: 10.1136/gutjnl-2012-303839
  56. Everard A, Belzer C, Geurts L, Ouwerkerk J.P, Druart C, Bindels L.B, Guiot Y, Derrien M, Muccioli G.G, Delzenne N.M, de Vos W.M, Cani P.D. Cross - talk between Akkermansia muciniphila and intestinal epithelium controls diet - induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066-71. doi: 10.1073/pnas.1219451110
  57. Bach Knudsen K.E. Microbial degradation of whole - grain complex carbohydrates and impact on short - chain fatty acids and health. Adv Nutr. 2015;6(2):206-13. doi: 10.3945/an.114.007450
  58. Den Besten G, van Eunen K, Groen A.K, Venema K, Reijngoud D.J, Bakker B.M. The role of short - chain fatty acids in the interplay between diet, gut microbiota, and host energymetabolism. J Lipid Res. 2013;54(9):2325-40. doi: 10.1194/jlr.R036012
  59. Turnbaugh P.J, Ley R.E, Mahowald M.A, Magrini V, Mardis E.R, Gordon J.I. An obesity - associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31. doi: 10.1038/nature05414
  60. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G. The gut microbiota suppresses insulin - mediated fat accumulation via the short - chain fatty acidreceptor GPR43. Nat Commun. 2013;4:1829. doi: 10.1038/ncomms2852
  61. Maslowski K.M, Vieira A.T, Ng A, Kranich J, Sierro F, Yu D, Schilter H.C, Rolph M.S, Mackay F, Artis D, Xavier R.J, Teixeira M.M, Mackay C.R. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282-6. doi: 10.1038/nature08530
  62. Claus S.P, Tsang T.M, Wang Y, Cloarec O, Skordi E, Martin F.P, Rezzi S, Ross A, Kochhar S, Holmes E, Nicholson J.K. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol Syst Biol. 2008;4:219. doi: 10.1038/msb.2008.56
  63. Yuan L, Bambha K. Bile acid receptors and nonalcoholic fatty liver disease. World J Hepatol. 2015;7(28):2811-8. doi: 10.4254/wjh.v7.i28.2811
  64. Ridaura V.K, Faith J.J, Rey F.E, Cheng J, Duncan A.E, Kau A.L, Griffin N.W, Lombard V, Henrissat B, Bain J.R, Muehlbauer M.J, Ilkayeva O, Semenkovich C.F, Funai K, Hayashi D.K, Lyle B.J, Martini M.C, Ursell L.K, Clemente J.C, van Treuren W, Walters W.A, Knight R, Newgard C.B, Heath A.C, Gordon J.I. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. doi: 10.1126/science.1241214
  65. Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J, Liu J, Dong B, Huang X, Moore D.D. Nuclear receptor - dependent bile acid signaling is required for normal liver regeneration. Science. 2006;312(5771):233-6. doi: 10.1126/science.1121435
  66. De Aguiar Vallim T.Q, Tarling E.J, Edwards P.A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17(5):657-69. doi: 10.1016/j.cmet.2013.03.013
  67. Neuschwander-Tetri B.A, Loomba R, Sanyal A.J, Lavine J.E, van Natta M.L, Abdelmalek M.F, Chalasani N, Dasarathy S, Diehl A.M, Hameed B, Kowdley K.V, Mc Cullough A, Terrault N, Clark J.M, Tonascia J, Brunt E.M, Kleiner D.E, Doo E; NASH Clinical Research Network. Farnesoid X nuclear receptor ligand obetic holic acid for non - cirrhotic, non - alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo - controlled trial. Lancet. 2015;385(9972):956-65. doi: 10.1016/S0140-6736(14)61933-4
  68. Cariou B. The farnesoid X receptor (FXR) as a new target in non - alcoholic steatohepatitis. Diabetes Metab. 2008;34(6 Pt 2):685-91. doi: 10.1016/S1262-3636(08)74605-6
  69. Watanabe M, Horai Y, Houten S.M, Morimoto K, Sugizaki T, Arita E, Mataki C, Sato H, Tanigawara Y, Schoonjans K, Itoh H, Auwerx J. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesityand diabetes through reduced energy expenditure. J Biol Chem. 2011;286(30):26913-20. doi: 10.1074/jbc.M111.248203
  70. Houten S.M, Volle D.H, Cummins C.L, Mangelsdorf D.J, Auwerx J. In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acidsignaling tissue. Mol Endocrinol. 2007;21(6):1312-23. doi: 10.1210/me.2007-0113
  71. Jiang C, Xie C, Lv Y, Li J, Krausz K.W, Shi J, Brocker C.N, Desai D, Amin S.G, Bisson W.H, Liu Y, Gavrilova O, Patterson A.D, Gonzalez F.J. Intestine - selective farnesoid X receptor inhibition improves obesity - related metabolic dysfunction. Nat Commun. 2015 Dec 15;6:10166. doi: 10.1038/ncomms10166
  72. Fang S, Suh J.M, Reilly S.M, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, Atkins A.R, Khvat A, Schnabl B, Yu R.T, Brenner D.A, Coulter S, Liddle C, Schoonjans K, Olefsky J.M, Saltiel A.R, Downes M, Evans R.M. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulinresistance. Nat Med. 2015;21(2):159-65. doi: 10.1038/nm.3760
  73. Mouzaki M, Wang A.Y, Bandsma R, Comelli E.M, Arendt B.M, Zhang L, Fung S, Fischer S.E, Mc Gilvray I.G, Allard J.P. Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease. PLoS One. 2016;11(5):e0151829. doi: 10.1371/journal.pone.0151829

Copyright (c) 2019 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies