Association of FOXP3 gene -3279 C>A polymorphism with the risk of pulmonary sarcoidosis


Cite item

Full Text

Abstract

Aim. To investigate the association of the polymorphic marker -3279 C>A of the FOXP3 gene with the risk of pulmonary sarcoidosis (PS) and to estimate the transcription level of this gene in the carriers of different genotypes of this polymorphic marker. Subjects and methods. The investigation included 99 patients of Russian ethnicity (mean age, 45.41±1.31 years) living in the Republic of Karelia, who were diagnosed with persistent PS, and 116 healthy donors (mean age, 42.06±1.30 years) in the control group. The alleles and genotypes of the polymorphic marker -3279 C>A of the FOXP3 gene were identified using polymerase chain reaction (PCR)-restriction fragment length polymorphism. The number of transcripts of the studied gene in the peripheral blood leukocytes of healthy donors and PS patients was determined with real-time PCR. Results. The control group and the PS patient one had no statistically significant differences in the distribution of the frequencies of alleles and genotypes by the polymorphic marker –308G>A of the FOXP3 gene (p > 0.05). The number of FOXP3 gene transcripts was not statistically significantly different in the peripheral blood leukocytes of patients with PS and control individuals. No statistically significant differences were observed in the mRNA expression levels in the above-mentioned gene in the carriers of different genotypes by the polymorphic marker -3279 C>A of the FOXP3 gene in all examined groups. Conclusion. The polymorphic marker -3279 C>A of the FOXP3 gene is unassociated with the risk of PS.

About the authors

I E Malysheva

ФБГУН «Институт биологии Карельского научного центра РАН

Петрозаводск, Россия

L V Topchieva

ФБГУН «Институт биологии Карельского научного центра РАН

Петрозаводск, Россия

E L Tikhonovich

Республиканская больница им. В.А. Баранова

Петрозаводск, Россия

I V Kurbatova

ФБГУН «Институт биологии Карельского научного центра РАН

Петрозаводск, Россия

O V Balan

Республиканская больница им. В.А. Баранова

Петрозаводск, Россия

References

  1. Саркоидоз: Монография. Под ред. А.А. Визеля. Серия монографий Российского респираторного общества. Гл. ред. серии А.Г. Чучалин. М.: Атмосфера, 2010.
  2. Taflin C, Miyara M, Nochy D, Valeyre D, Naccache J, Altare F, Salek-Peyron P, Badoual C, Bruneval P, Haroche J, Marthian A, Amoura Z, Hill G, Gorochov G. FOXP3+ regulatory T cells suppress early stage of granuloma formation but have little impact on sarcoidosis lesions. The American journal of pathology. 2009; 174(2): 497-508. https://doi.org/10.2353/ajpath.2009.080580
  3. Baughman R, Lower E, du Bois R. Sarcoidosis. Lancet. 2003; 361(9363):1111-1118. https://doi.org/10.1016/S0140-6736(03)12888-7
  4. Broos C, van Nimwegen M, Kleinjan A, ten Berge B, Muskens F, in’t Veen J, Annema J, Lambrecht B, Hoogsteden H, Hendriks R, Kool M, van den Blink B. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respiratory research. 2015;16:108. https://doi.org/10.1186/s12931-015-0265-8
  5. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775-787. https://doi.org/10.1016/j.cell.2008.05.009
  6. Пашнина И.А. Регуляторные Т-клетки у детей с аутоиммунными заболеваниями. Медицинская иммунология. 2014;16(4): 353-360. https://doi.org/10.15789/1563-0625-2014-4–353–360
  7. Yamaguchi T, Wing J, Sakaguschi S. Two modes of immune suppression by Foxp3(+) regulatory T cells under inflammatory or non-inflammatory conditions. Seminars in immunology. Seminars in immunology. 2011;23(6):424-430. https://doi.org/10.1016/j.smim.2011.10.002
  8. Wan Y, Flavell R. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature. 2007; 445(7129):766-770. https://doi.org/10.1038/nature05479
  9. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299(5609):1057-1061. https://doi.org/10.1126/science.1079490
  10. Fontenot J, Gavin M, Rudensky A. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature immunology. 2003;4(4):330-336. https://doi.org/10.1038/ni904
  11. Lee M, Bae S, Lee Y. Assotiation between FOXP3 polymorphisms and susceptibility to autoimmune diseases: A meta-analysis. Autoimmunity. 2015;48(7):445-452. https://doi.org/10.3109/08916934.2015.1045582
  12. Gholami M, Esfandiary A, Vatanparast M, Mirfakhraie R, Hosseini M, Ghafouri-Fard S. Genetic variants and expression study of FOXP3 gene in acute coronary syndrome in Iranian patients. Cell biochemistry and function. 2016;34(3):158-162. https://doi.org/10.1002/cbf.3174
  13. In J, Lee N, Roh E, Shin S, Park K, Song E. Association of aplastic anemia and Foxp3 gene polymorphisms in Koreans. Hematology. 2016;1-6. https://doi.org/10.1080/10245332.2016.1238645
  14. Wu Z, You Z, Zhang C, Li Z, Su X, Zhang X. Association between functional polymorphisms of Foxp3 gene and the occurrence of unexplained recurrent spontaneous abortion in a Chinese Han population. Clinical & developmental immunology. 2012:896458. https://doi.org/10.1155/2012/896458
  15. Genre J, Errante P, Kokron C, Toledo-Barros M, Câmara N, Rizzo L. Reduced frequency of CD4(+)CD25(HIGH)FOXP3(+) cells and diminished FOXP3 expression in patients withCommon Variable Immunodeficiency: a link to autoimmunity? Clinical immunology (Orlando, Fla.). 2009;132(2):215-221. https://doi.org/10.1016/j.clim.2009.03.519
  16. База данных NCBI: https://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=3761548&pt=1vsK4RLk4OP8RPNbB477yFS7JLOO_ 0GFIHVpxZMyXtm-nr9kD
  17. Norouzian M, Rahimzadeh M, Rajaee M, Arabpour F, Nadery N. FoxP3 gene promoter polymorphism affects susceptibility to preeclampsia. Human immunology. 2016 Sep 8. pii: S0198-8859(16)30440-2. https://doi.org/10.1016/j.humimm.2016.09.001
  18. Song Q, ShenZ, Xing X, Yin R, Wu Y, You Y, Guo H, Chen I, Hao F, Bai Y. An association study of single nucleotide polymorphisms of the FOXP3 intron-1 and risk of Psoriasis vulgaris. Indian journal of biochemistry & biophysics. 2012;49(1):25-35.
  19. Wu Z, Wang W, Wang T, yang R, Li Y, Li T, Wang S. Association of FOXP3 gene polymorphism in Chinese women withendometriosis]. Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics. 2013;30(1):106-110. https://doi.org/10.3760/cma.j.issn.1003-9406.2013.01.026
  20. Fodor E, Garaczi E, Polyánka H, Koreck A, Kemény L, Széll M. The rs3761548 polymorphism of FOXP3 is a protective genetic factor against allergic rhinitis in the Hungarian female population. Human immunology. 2011;72(10):926-929. https://doi.org/10.1016/j.humimm.2011.06.011
  21. Zhang Y, Duan S, Wei X, Zhao Y, Zhao L, Zhang L. Association between polymorphisms in FOXP3 and EBI3 genes and the risk for development of allergic rhinitis in Chinese subjects. Human immunology. 2012;73(9):939-945. https://doi.org/10.1016/j.humimm.2012.07.319
  22. Miyara M, Amoura Z, Parizot C, Badoual C, Dorgham K, Trad S, Kambouchner M, Valeyre D, Chapelon-Abric C, Debre P, Piette J, Gorochov G. The immune paradox of sarcoidosis and regulatory T cells. The Journal of experimental medicine. 2006; 203(2): 359-370. https://doi.org/10.1084/jem.20050648
  23. Rappl G, Pabst S, Riemann DD, Schmidt A, Wickenhauser C, Schütte W, Hombach A, Seliger B, Grohé C, Abken H. Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation. Clinical immunology (Orlando, Fla.). 2011;140(1):71-83. https://doi.org/10.1016/j.clim.2011.03.015

Copyright (c) 2017 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies