Associations between metabolic syndrome and reduced lung function in young people


Cite item

Full Text

Abstract

Aim. To reveal possible associations between metabolic syndrome (MS) and reduced lung function. Subjects and methods. In 2013—016, a cross-sectional survey was conducted in 908 Novosibirsk dwellers, which included spirometry to evaluate external respiratory function (ERF). For the detection of MS, the investigators used the 2009 All-Russian Research Society of Cardiologists criteria: waist circumference (WC) > 80 cm for women and >94 cm for men in combination with two of the following criteria: blood pressure (BP) ≥130/85 mm Hg, triglycerides (TG) ≥1.7 mmol/l, high-density lipoproteins (HDL) cholesterol <1.0 mmol/l for men and <1.2 mmol/l for women, low-density lipoprotein (LDL) cholesterol >3.0 mmol/l, and glucose ≥6.1 mmol/l. Results. The mean values of WC were significantly greater with a forced expiratory volume in one second (FEV1) <80% than those with a FEV1 of ≥80% in both men (p=0.002) and women (p=0.050); in women, the mean values of WS were higher than those with a FEV1/forced vital capacity (FVC) <70% than those with a FEV1/FVC of ≥70% (p=0.047); the mean systolic and diastolic BP levels were significantly more with reductions in FEV1 and FVC, and the level of HDL cholesterol was significantly lower than that with a FEV1 of < 80% in men only. Significant correlations were found between FEV1 and all components of MS in men, between the majority of components of MS and FVC in men, between WC, BP, and FEV1/FVC in men and women, between plasma glucose levels and FEV1/FVC in women. Linear regression analysis revealed significant inverse correlations of FEV1 with TG, glucose, BP; those of FVC with TG, glucose; at the same time a positive association with HDL cholesterol in men, and only a negative correlation of FEV1/FVC with WC. Conclusion. The revealed associations between MS and reduced lung function can most likely be explained by the greater prevalence of both MS and its components (hypertension, hypertriglyceridemia, hyperglycemia, LDL hypercholesterolemia) among Novosibirsk men. This is consistent with the assertion that the decline in ERF, particularly FEV1, may be a marker of future cardiovascular disease morbidity and mortality.

About the authors

N A Kovalkova

ФГБНУ «НИИ терапии и профилактической медицины»

Новосибирск, Россия

Yu I Ragino

ФГБНУ «НИИ терапии и профилактической медицины»

Новосибирск, Россия

N Yu Travnikova

ФГБНУ «НИИ терапии и профилактической медицины»

Новосибирск, Россия

D V Denisova

ФГБНУ «НИИ терапии и профилактической медицины»

Новосибирск, Россия

L V Shcherbakova

ФГБНУ «НИИ терапии и профилактической медицины»

Новосибирск, Россия

M I Voevoda

ФГБНУ «НИИ терапии и профилактической медицины»

Новосибирск, Россия

References

  1. James PT, Rigby N, Leach R. The obesity epidemic, metabolic syndrome and future prevention strategies. European Journal of Cardiovascular Prevention & Rehabilitation. 2004;11(1): 3-8. https://doi.org/10.1097/01.hjr.0000114707.27531.48
  2. Hildrum B, Mykletun A, Hole T, Midthjell K, Dahl A. Age specific prevalence of the metabolic syndrome by International Diabetes Federation and National Education Program: The Norwegian HUNT 2 study. BMC Public Health. 2007;7(1):220. https://doi.org/10.1186/1471-2458-7-220
  3. Симонова Г.И., Мустафина С.В., Печенкина Е.А. Распространенность метаболического синдрома в Сибири: популяционное исследование в г. Новосибирске. Бюллетень Сибирского отделения Российской академии медицинских наук. 2011;5(31):100-106.
  4. Sin DD, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest. 2005; 127(6): 1952-1959. https://doi.org/10.1378/chest.127.6.1952
  5. McClean KM, Kee F, Young IS, Elborn JS. Obesity and the lung: 1. Epidemiology. Thorax. 2008;63(7):649-654. https://doi.org/10.1136/thx.2007.086801
  6. Yeh HC, Punjabi NM, Wang NY, Pankow JS, Duncan BB, Brancati FL. Vital capacity as a predictor of incident type 2 diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care. 2005;28(6):1472-1479. https://doi.org/10.2337/diacare.28.6.1472
  7. Lawlor DA, Ebrahim S, Smith GD. Associations of measures of lung function with insulin resistance and type 2 diabetes: findings from the British Women’s Heart and Health Study. Diabetologia. 2004;47(2):195-203. https://doi.org/10.1007/s00125-003-1310-6
  8. Schunemann HJ, Dorn J, Grant BJ, Winkelstein Jr W, Trevisan M. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest. 2000;118:656-664. https://doi.org/10.1093/aje/kwg276
  9. Engstrom G, Lind P, Hedblad B, et al. Lung function and cardiovascular risk: relationship with inflammation-sensitive plasma proteins. Circulation. 2002;106:2555-2560. https://doi.org/10.1161/01.cir.0000037220.00065.0d
  10. Hole DJ, Watt GC, Davey-Smith G, Hart CL, Gillis CR, HawthorneVM. Impaired lung function and mortality risk in men and women: findings from the Renfrew and Paisley prospective population study. BMJ. 1996;313:711-715. https://doi.org/10.1136/bmj.313.7059.711
  11. Nikitin Yu, Malyutina S. MONICA. Monograph and Multimedia Sourcebook...Edited by Hugh Tunstall-Pedoe (with 64 other contributors for the WHO MONICA Project). WHO, Geneva 2003;237.
  12. Hankinson JL, Odencrantz JR, Fedan Hankinson KB. Spirometric Reference Values from a Sample of the General U.S. Population. Am J Respir Crit Care Med. 1999;159:179-187. https://doi.org/10.1164/ajrccm.159.1.9712108
  13. Воевода М.И., Ковалькова Н.А., Рагино Ю.И., Денисова Д.В., Травникова Н.Ю. Распространенность метаболического синдрома у жителей Новосибирска в возрасте от 25 до 45 лет. Терапевтический архив. 2016;88(10):51-57. https://doi.org/10.17116/terarkh2016881051-56
  14. Yu-Jin Paek, Ki-Suck Jung, Young-Il Hwang, Kang-Sook Lee, Dong Ryul Lee, Jung-Un Lee. Association between low pulmonary function and metabolic risk factors in Korean adults: the Korean National Health and Nutrition Survey. Metabolism. 2010;59(9):1300-1306. https://doi.org/10.1016/j.metabol.2009.12.005
  15. Nakagami, Yayoi Yamamoto, Junko Oya, Yasuko Uchigata. Association Between Lung Function and Metabolic Syndrome Independent of Insulin in Japanese Men and Women. Japanese Clinical Medicine. 2014;5:1-8. https://doi.org/10.4137/jcm.s13564
  16. Ji-Ho Choi, Sunghoon Park, Youn-Ho Shin, Moo-Young Kim and Yong-Jae Lee. Sex differences in the relationship between metabolic syndrome and pulmonary function: The 2007 Korean National Health and Nutrition Examination Survey. Endocrine Journal. 2011;58(6),459-465. https://doi.org/10.1507/endocrj.k11e-011
  17. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, Coates A, C.P.M. van der Grinten, Gustafsson P, Hankinson J, Jensen R, Johnson DC, MacIntyre N, McKay R, Miller MR, Navajas D, Pedersen OF, Wanger J. Interpretative strategies for lung function tests. Eur. Respir. J. 2005. Eur Respir J. 2005;26:948-968. https://doi.org/10.1183/09031936.05.00035205
  18. Brumpton B., Langhammer A., Romundstad P., Chen Y. General and abdominal obesity and incident asthma in adults: the HUNT study. Eur Respir J. 2013;41(2):253-254. https://doi.org/10.1183/09031936.00012112
  19. Nguyen M, Satoh H, Favelyukis S et al. JNK and tumor necrosis factor-α mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. Journal of Biological Chemistry. 2005;280.(42):35361-35371. https://doi.org/10.1074/jbc.m504611200
  20. Lin WY, Yao CA, Wang HC, Huang KC. Impaired lung function is associated with obesity and metabolic syndrome in adults. Obesity. 2006;14(9):1654-1661. https://doi.org/10.1038/oby.2006.190
  21. Nakajima K, Kubouchi Y, Muneyuki T, et al. A possible association between suspected restrictive pattern as assessed by ordinary pulmonary function test and the metabolic syndrome. Chest. 2008;134:712-718. https://doi.org/10.1378/chest.07-3003
  22. Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between lung function and Type 2 diabetes mellitus. Diabet Med. 2010;27(9):977-987. https://doi.org/10.1111/j.1464-5491.2010.03073.x
  23. Armellini F, Zamboni M, Bosello O. Hormones and body composition in humans: clinical studies. Int J Obes Relat Metab Disord. 2000;24(Suppl.2):S18-S21. https://doi.org/10.1038/sj.ijo.0801270
  24. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745-E751.
  25. Staiger H, Tschritter O, Machann J, Thamer C, Fritsche A, Maerker E, Schick F, Häring HU, Stumvoll M. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes Res. 2003;11(3):368-372. https://doi.org/10.1038/oby.2003.48
  26. Sin DD, Man SF. Impaired lung function and serum leptin in men and women with normal body weight: a population based study. Thorax. 2003;58:695-698. https://doi.org/10.1136/thorax.58.8.695
  27. Dahl M, Tybjaerg-Hansen A, Vestbo J, Lange P, Nordestgaard BG. Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1008-1011. https://doi.org/10.1164/ajrccm.164.6.2010067
  28. Inverse association between pulmonary function and C-reactive protein in apparently healthy subjects. Am J Respir Crit Care Med. 2006;174:626-632. https://doi.org/10.1164/rccm.200602-243OC
  29. Poldermans D, Bax JJ, Boersma E et al. Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery. European Heart Journal. 2009;30:2768-2812. https://doi.org/10.1093/eurheartj/ehp337

Copyright (c) 2017 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies