Risk of type 2 diabetes mellitus in the Kyrgyz population in the presence of ADIPOQ (G276T), KCNJ11 (Glu23Lys), TCF7L2 (IVS3C>T) gene polymorphisms


Cite item

Full Text

Abstract

Aim. To analyze the association of genotype combinations of the polymorphic markers G276T in the ADIPOQ gene, Glu23Lys in the KCNJ11 gene, and IVS3C>T in the TCF7L2 gene with the development of type 2 diabetes mellitus (T2DM) in the Kyrgyz population. Subjects and methods. The investigation enrolled 23 Kyrgyz people, of whom there were 114 patients with T2DM and 109 without T2DM (a control group). T2DM was diagnosed in accordance with the WHO criteria (1999). The genotypes of ADIPOQ (G276T), KCNJ11 (Glu23Lys), and TCF7L2 (IVS3C>T) gene polymorphisms were identified using the restriction fragment length polymorphism analysis. Results. When typing at the polymorphic loci G276T in the ADIPOQ gene, Glu23Lys in the KCNJ11 gene, and IVS3C>T in the TCF7L2 gene, the development of T2DM in the Kyrgyz population was associated with the T allele (odds ratio (OR), 1.68; p=0.025), the heterozygous G276T genotype (OR 1,8; p=0.036) in the ADIPOQ gene; the 23Lys allele (OR, 1.62; p=0.019) in the KCNJ11 gene; a two-locus genotype combination in the genes ADIPOQ/KCNJ11: G276T/Glu23Lys (OR, 4.88; p=0.0013), G276G/Lys23Lys (OR, 4.65; p=0.019), G276T/Glu23Glu (OR, 3.10; p=0.022), a two-locus genotype combination in the genes ADIPOQ/TCF7L2: G276T/СС (OR, 1.97; p=0.04); two-locus genotype combinations in the genes KCNJ11/TCF7L2: Lys23Lys/CC (ОR, 2.65; p=0.042), Glu23Lys/CT (OR, 3.88; p=0.027); and a three-locus genotype combination in the genes ADIPOQ/KCNJ11/TCF7L2: G276T/Glu23Lys/CT (OR, 14.48; p=0.02). Conclusion. The development of T2DM in the Kyrgyz population is genetically determined by ADIPOQ (G276T) gene, KCNJ11 (Glu23Lys), and TCF7L (IVS3C>T) gene polymorphisms with the predisposing value of the T allele of the heterozygous G276T genotype in the ADIPOQ gene; the 23Lys allele in the KCNJ1 gene; as well as by genotype combinations in the genes ADIPOQ/KCNJ11 (G276T/Glu23Lys, G276G/Lys23Lys, G276T/Glu23Glu); ADIPOQ/TCF7L2 (G276T/SS); KCNJ11/TCF7L2 (Lys23Lys/CC, Glu23Lys/CT); ADIPOQ/KCNJ11/TCF7L2 (G276T/Glu23Lys /CT). The IVS3C>T locus in the TCF7L2 gene is not independently statistically significantly associated with the development of T2DM; however, its predisposing effect has been identified in its combination with the variant genotypes of the polymorphic loci G276T in the ADIPOQ gene and Glu23Lys in the KCNJ11 gene.

About the authors

Zh T Isakova

Институт молекулярной биологии и медицины

Бишкек, Кыргызская Республика

E T Talaibekova

Институт молекулярной биологии и медицины

Бишкек, Кыргызская Республика

D A Asambaeva

Институт молекулярной биологии и медицины

Бишкек, Кыргызская Республика

A S Kerimkulova

Национальный центр кардиологии и терапии

Бишкек, Кыргызская Республика

O S Lunegova

Национальный центр кардиологии и терапии

Бишкек, Кыргызская Республика

N M Aldasheva

Кыргызско-российский славянский университет

Бишкек, Кыргызская Республика

A A Aldashev

Институт молекулярной биологии и медицины

Бишкек, Кыргызская Республика

References

  1. Дедов И.И. Сахарный диабет — опаснейший вызов мировому сообществу. Вестник Российской академии медицинских наук. 2012;67(1):7-13. https://doi.org/10.15690/vramn.v67i1.103
  2. Бондарь И.А., Шабельникова О.Ю. Генетические основы сахарного диабета 2 типа. Сахарный диабет. 2013;(4):11-16. https://doi.org/10.14341/DM2013411-16
  3. Singh S. Genetics of Type 2 Diabetes: Advances and Future Prospect. J Diabetes & Metabolism. 2015; 6:4. https://doi.org/10.4172/2155-6156.1000518
  4. Preedy VR, Hunter RJ. Adipokines. 6th ed. Enfield, N.H.: Science Publishers. 2011.
  5. Clement JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J. Association and stoichiometry of K(ATP) channel subunits. Neuron. 1997;18:827-838.
  6. Lyssenko V, Lupi R, Marchetti P, Guerra SD, Orho-Melander M, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clini Invest. 2007;117:2155-2163. https://doi.org/10.1172/JCI30706
  7. Takahashi M, Arita Y, Yamagata K, Matsukawa Y, Okutomi K, Horie M, Shimomura I, Hotta K, Kuriyama H, Kihara S, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes Relat Metab Disord. 2000;24(7):861-868.
  8. Ходырев Д.С., Никитин А.Г., Бровкин А.Н., Лаврикова Е.Ю., Лебедева Н.О., Викулова О.К., Шамхалова М.Ш., Шестакова М.В., Носиков В.В., Аверьянов А.В. Анализ ассоциации полиморфных маркеров генов ADIPOQ, ADIPOR1и ADIPOR2 с сахарным диабетом 2 типа. Сахарный диабет 2015;18(2):5-11. https://doi.org/10.14341/DM201525-11
  9. Железнякова А.В., Лебедева Н.О., Викулова О.К., Носиков В.В., Шамхалова М.Ш., Шестакова М.В. Риск развития хронической болезни почек у больных сахарным диабетом 2 типа детерминирован полиморфизмом генов NOS3, APOB, KCNJ11,TCF7L2. Сахарный диабет. 2014;17(3):23-30. https://doi.org/10.14341/DM2014323-30
  10. Zheleznyakova AV., Vikulova OK., Nosikov VV., Shestakova MV. The impact of polymorphisms in NOS3, APOB, KCNJ11, TCF7L2 genes on development of chronic kidney disease in type 2 diabetic patients. Exp Clin Endocrinol Diabetes 2014; Volume 122, LB16 (IF 2012 1.55). https://doi.org/10.1055/s-0034-1372322
  11. Henneman P, Aulchenko YS, Frants RR, Zorkoltseva IV, Zillikens MC, Frolich M, Oostra BA, van Dijk KW, van Duijn CM. Genetic architecture of plasma adiponectin overlaps with the genetics of metabolic syndrome-related traits. Diabetes Care. 2010;33: 908-913. https://doi.org/10.2337/dc09-1385
  12. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 2003;278:45021-45026. https://doi.org/10.1074/jbc.M307878200
  13. Mackawy MH, Alzohairy M, Entisar Abd-Alfarag Ahmed., Badawy E.H. Adiponectin Gene Polymorphism and the Incidence of Type 2 Diabetes Mellitus in Obese Patients in Qassim Region, Saudi Arabia. Journal of American Science. 2011;7(12):432-443. http://www.americanscience.org
  14. Gonzalez-Sanchez JL, Zabena CF, Martinez-Larrad M.T. et al. An SNP in the adiponectin gene is associated with decreased serum adiponectin levels and risk for impaired glucose tolerance. Obes Res. 2005;13(5):807-812. https://doi.org/10.1038/oby.2005.91
  15. Mackevics V, Heid IM, Wagner SA, Cip P, Doppelmayr H, Lejnieks A. The adiponectin gene is associated with adiponectin levels but not with characteristics of the insulin resistance syndrome in healthy Caucasians. European Journal of Human Genetics. 2006;14:349-356. https://doi.org/10.1038/sj.ejhg.5201552
  16. Li P, Jiang R, Li L, Liu C, Yang F, Qiu Y. Correlation of serum adiponectin and adiponectin gene polymorphism with metabolic syndrome in Chinese adolescents. European Journal of Clinical Nutrition. 2015;69:62-67. https://doi.org/10.1038/ejcn.2014.152
  17. Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 2002;51(2):536-540. https://doi.org/10.2337/diabetes.51.2.536
  18. Tu Y, Yu Q, Fan G. et al. Assessment of type 2 diabetes risk conferred by SNPs rs2241766 and rs1501299 in the ADIPOQ gene, a case/control study combined with meta-analyses. Mol Cell Endocrinol. 2014;396(1-2):1-9. https://doi.org/10.1016/j.mce.2014.08.006
  19. Hwang JY, Park JE, Choi YJ. Huh KB, Kim WY. SNP276G>T polymorphism in the adiponectin gene is associated with metabolic syndrome in patients with Type II diabetes mellitus in Korea. European Journal of Clinical Nutrition. 2010;64:105-107. https://doi.org/10.1038/ejcn.2009.94
  20. Tsai MK, Wang HD, Shiang JCh. Sequence Variants of ADIPOQ and Association with Type 2 Diabetes Mellitus in Taiwan Chinese Han Population. Sequence Variants of ADIPOQ and Association with Type 2 Diabetes Mellitus in Taiwan Chinese Han Population. The Scientific World Journal. vol. 2014; Article ID 650393. https://doi.org/10.1155/2014/650393
  21. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy CJ, Sampson M, Halford S, McCarthy MI, Hattersley AT, Frayling TM. Large-Scale Association Studies of Variants in Genes Encoding the Pancreatic β-Cell K ATP Channel Subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) Confirm That the KCNJ11E23K Variant Is Associated With Type 2 Diabetes. Diabetes. 2003;52:568-572. https://doi.org/10.2337/diabetes.52.2.568
  22. Zhou D, Zhang D, Liu Y, Zhao T, Chen Z, Liu Zh, Yu L, Zhang Z, Xu H, He L. The E23K variation in the KCNJ11gene is associated with type 2 diabetes in Chinese and East Asian population. Journal of Human Genetics. 2009;54:433-435. https://doi.org/10.1038/jhg.2009.54
  23. Sakamoto Y, Inoue H, Keshavarz P, Miyawaki K, Yamaguch Y, Moritani M, Kunika K, Nakamura N, Yoshikawa T, Yasui N, Shiota H, Tanahashi T, Itakur M. SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population. J Hum Genet. 2007;52:781-793. https://doi.org/10.1007/s10038-007-0190-x
  24. Koo B, Cho Y, Park B, Cheong H, Shin H, Jang H, Kim S, Lee H, Park K. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population. Diabet Med. 2007;24:178-186. https://doi.org/10.1111/j.1464-5491.2006.02050
  25. Jiang YD, Chuang LM, Pei D, Lee YJ, Wei JN, Sung FC, Chang TJ. Genetic Variations in the Kir6.2 Subunit (KCNJ11) of Pancreatic ATP-Sensitive Potassium Channel Gene Are Associated with Insulin Response to Glucose Loading and Early Onset of Type 2 Diabetes in Childhood and Adolescence in Taiwan. Hindawi Publishing Corporation International Journal of Endocrinology Int J Endocrinol. 2014;983016. https://doi.org/10.1155/2014/983016
  26. Lasram K, Halim NB, Hsouna S, Kefi R, Arfa I, Ghazouani W, Jamoussi H, Benrahma H, Kharrat N, Rebai A, Ammar S.B, Bahri S, Barakat A, Abid A, Abdelhak S. Evidence for Association of the E23K Variant of KCNJ11Gene with Type 2 Diabetes in Tunisian Population: Population-Based Study and Meta-Analysis. Hindawi Publishing Corporation BioMed Research International. Volume 2014, Article ID 265274,9 pages. https://doi.org/10.1155/2014/265274
  27. Chistiakov D, Potapov V, Khodirev D, Shamkhalova M, Shestakova M, Nosikov V. Replication of association between polymorphisms of the pancreatic ATP-sensitive potassium channel and susceptibility to type 2 diabetes in two Russian urban populations. Cent Eur J Biol. 2010;5(1):67-77. https://doi.org/10.2478/s11535-009-0059-4
  28. Rastegari A, Rabbani M, Sadeghi HM, Imani EF, Hasanzadeh A. Moazen F. Association of KCNJ11 (E23K) gene polymorphism with susceptibility to type 2 diabetes in Iranian patients. Adv Biomed Res. 2015;6:4:1. https://doi.org/10.4103/2277-9175.148256
  29. Ezzidi I, Mtiraoui N, Cauchi S, Vaillant E, Dechaume A, Chaieb M, Kacem M, Almawi W, Froguel P, Mahjoub T, Vaxillaire M. Contribution of type 2 diabetes associated loci in the Arabic population from Tunisia: a case-control study. BMC Medical Genetics 2009;15:10-33. https://doi.org/10.1186/1471-2350-10-33
  30. Duval A, Busson-Leconiat M, Berger R, Hamelin R: Assignment of the TCF-4 gene (TCF7L2) to human chromosome band 10q25.3. Cytogenet Cell Genet. 2000;88(3-4):264-265. https://doi.org/10.1159/000015534
  31. Бондарь И.А, Филипенко М.Л, Шабельникова О.Ю, Соколова Е.А. Ассоциация полиморфных маркеров rs7903146 гена TCF7L2 и rs1801282 гена PPARG (Pro12Ala) с сахарным диабетом 2 типа в Новосибирской области. Сахарный диабет. 2013;(4):17-22. https://doi.org/10.14341/DM2013417-22
  32. Никитин А.Г, Потапов В.А, Бровкин А.Н, Лаврикова Е.Ю, Ходырев Д.С, Шамхалова М.Ш, Сметанина С.А, Суплотова Л.Н, Шестакова М.В, Носиков В.В, Аверьянов А.В. Ассоциация полиморфных маркеров гена TCF7L2 с сахарным диабетом типа 2. Клиническая практика. 2014;1:5-7. http://clinpractice.ru
  33. Guinan KJ. Worldwide distribution of type II diabetes-associated TCF7L2 SNPs: Evidence for stratification in Europe. Biochem Genet. 2012;50:159-179. https://doi.org/10.1007/s10528-011-9456-2.
  34. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007; 316:1341-1345. https://doi.org/10.1126/science.1142382
  35. Damcott CM, Pollin TI, Reinhart LJ, Ott SH, Shen H. et al. Polymorphisms in the transcription factor 7- Like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: Replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes. 2006;55:2654-2659. https://doi.org/10.2337/db06-0338
  36. Cauchi S, Meyre D, Dina C, Choquet H, Samson C, Gallina S, Balkau B, Charpentier G, Pattou F, Stetsyuk V, Scharfmann R, Staels B, Fruhbeck G, Froguel P: Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diabetes. 2006;55(10):2903-2908. https://doi.org/10.2337/db06-0474
  37. Dou H, Ma E, Yin L, Jin Y, Wang H. The Association between Gene Polymorphism of TCF7L2 and Type 2 Diabetes in Chinese Han Population: A Meta-Analysis. PLoS ONE. 2015;8(3):e59495. https://doi.org/10.1371/journal.pone.0059495
  38. Hayashi T, Iwamoto Y, Kaku K, Hirose H, Maeda S. Replication study for the association of TCF7L2 with susceptibility to type 2 diabetes in a Japanese population. Diabetologia. 2007;50:980-984. https://doi.org/10.1007/s00125-007-0618-z
  39. Horikoshi M, Hara K, Ito C, Shojima N, Nagai R, Ueki K, Froguel P, Kadowaki T. A genetic variation of the transcription factor 7-like 2 gene is associated with risk of type 2 diabetes in the Japanese population. Diabetologia. 2007;50:747-751. https://doi.org/10.1007/s00125-006-0588-6
  40. Ren Q, Han XY, Wang F, Zhang XY, Han LC, Luo YY, Zhou XH, Ji L.N. Exon sequencing and association analysis of polymorphisms in TCF7L2with type 2 diabetes in a Chinese population. Diabetologia. 2008;51:1146-1152. https://doi.org/10.1007/s00125-008-1039-3
  41. Chang YC, Chang TJ, Jiang YD, Kuo SS, Lee KC, Chiu KC, Chuang LM. Association Study of the Genetic Polymorphisms of the Transcription Factor 7-Like 2 (TCF7L2) Gene and Type 2 Diabetes in the Chinese Population. http://diabetes.diabetesjournals.org on 19 June 2007. https://doi.org/10.2337/db07-0421
  42. Park SE, Lee WY, Oh KW, Baek KH, Yoon KH, et al. Impact of common type 2 diabetes risk gene variants on future type 2 diabetes in the non-diabetic population in Korea. J Hum Genet. 2012;57:265-268. https://doi.org/10.1038/jhg.2012.16
  43. Lehman DM, Hunt KJ, Leach RJ, Hamlington J, Arya R, Abboud HE, et al. Haplotypes of transcription factor 7-like 2 (TCF7L2) genes and its upstream region are associated with type 2 diabetes and age of onset in Mexican Americans. Diabetes. 2007;56:389-93. https://doi.org/10.2337/db06-0860
  44. Chandak GR, Janipalli CS, Bhaskar S, Kulkarni SR, Mohankrishna P, Hattersley AT, Frayling TM, Yajnik CS. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia. 2007;50:63-67. https://doi.org/10.1007/s00125-006-0502-2
  45. Helgason A, Palsson S, Thorleifsson G, Grant SF, Emilsson V, Gunnarsdottir S, Adeyemo A, Chen Y, Chen G, Reynisdottir I, Benediktsson R, Hinney A, Hansen T, Andersen G, Borch-Johnsen K, Jorgensen T, Schafer H, Faruque M, Doumatey A, Zhou J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Sigurdsson G, Hebebrand J, Pedersen O, Thorsteinsdottir U, Gulcher JR, Kong A, Rotimi C, Stefansson K: Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet. 2007;2:218-225. https://doi.org/10.1038/ng1960
  46. Pourahmadi M, Erfanian S, Moradzadeh M, Jahromi A.S. Non-Association between rs7903146 and rs12255372 Polymorphisms in Transcription Factor 7-Like 2 Gene and Type 2 Diabetes Mellitus in Jahrom City, Iran. Diabetes Metab J. 2015;39:512-517. https://doi.org/10.4093/dmj.2015.39.6.512
  47. Авраменко Т.В., Грибанов А.В., Россоха З.И. Генетические маркеры в прогнозировании ранних и поздних форм преэклампсии у беременных с сахарным диабетом 1-го типа. Научно-практический медицинский журнал. Репродуктивная эндокринология. 2015;6(26):56-65. www.REPRODUCT-ENDO.COM/WWW.REPRODUCT-ENDO.COM.UA

Copyright (c) 2017 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies