Circulating leptin and the trophological status of patients with chronic obstructive pulmonary disease


Cite item

Full Text

Abstract

Aim. To study the specific features of the nutritional status of patients with persistent chronic obstructive pulmonary disease (COPD) in relation to the hormone-regulating function of energy exchange in terms of leptin and to concurrently evaluate the functional status of fat and protein digestion and absorption and to measure body fat percentage. To assess the influence of these factors on the regulation of the serum concentration of leptin and its potential role in the development of trophological insufficiency in patients.
Subjects and methods. In 93 patients with COPD (Stages I, II, and III in 22, 36, and 35 patients, respectively, the nutritional status was evaluated by somatometric methods. The concentration of leptin was measured by enzyme immunoassay using a test system (DSL, USA). Absorption was estimated by biochemical studies and by using radionuclides. Body fat content was determined, by measuring bioelectric impedance with an OmRon BF-302 apparatus (Japan).
Results. Protein and fat absorption was decreased in patients with moderate and mainly severe COPD as compared with that in the control group and correlated with body weight deficit and lower body fat percentage. Decreased leptin levels were detected in Stages II-III COPD and correlated with the degree of the disease and reduced protein (r = 0.68 ± 0.02) and fat (r = 0.64 ± 0.18) absorption.
Conclusion. Protein and fat absorption impairments correlating with body weight deficit in patients with COPD underline the significant role of this mechanism in the development of trophological insufficiency. In COPD patients with trophological insufficiency, the lower circulating leptin levels that correlate with impaired absorption of fatty acids and protein characterize the pathogenetic role of secondary malabsorption syndrome in leptin-mediated impairments of energy exchange mechanisms. Functional insufficiency of the hormone-regulating mechanism responsible for energy exchange in terms of leptin in patients with Stages II-III COPD gives warning of the insufficient stock of adipose tissue and its reduced energy reserve.

About the authors

El'vira Ivanovna Beloborodova

Сибирский государственный медицинский университет

Кафедра терапии факультета повышения квалификации и последипломной подготовки специалистовд-р мед. наук, проф., зав. каф; Сибирский государственный медицинский университет

Lidiya Alekseevna Akimova

Томский военно-медицинский институт

кафедра терапии усовершенствования врачейканд. мед. наук, доц. каф; Томский военно-медицинский институт

Anna Vladimirovna Asanova

Сибирский государственный медицинский университет

Кафедра терапии факультета повышения квалификации и последипломной подготовки специалистовврач городской больницы № 3 Томска, заочный аспирант; Сибирский государственный медицинский университет

Vera Antonovna Burkovskaya

Сибирский государственный медицинский университет

Кафедра терапии факультета повышения квалификации и последипломной подготовки специалистовканд. мед. наук, доц. каф; Сибирский государственный медицинский университет

Nadezhda Georgievna Kritskaya

Сибирский государственный медицинский университет

канд. биол. наук, ст. науч. сотр. НИИ онкологии, лаборатория патанатомии; Сибирский государственный медицинский университет

E I Beloborodova

L A Akimova

A V Asanova

V A Burkovskaya

N G Kritskaya

References

  1. Agusti A. G. N. Systemic effects of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2005; 2: 367-370.
  2. Dourado V. Z., Tanni S. E., Vale S. A. et al. Systemic manifestation in chronic obstructive pulmonary disease. J. Bras. Pneumol. 2006; 32 (2): 161-171.
  3. Man S. F. COPD as risk factor for cardiovascular morbidity and mortality. Proc. Am. Thorac. Soc. 2005; 2 (1): 8-11.
  4. Gray-Donald K., Gibbons L., Shapiro S. H. et al. Nutritional status and mortality in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1996; 153: 961-966.
  5. Landbo C., Prescott E., Lange P. et al. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999; 160: 1856-1861.
  6. Schols A. M. W. J., Slangen J., Volovics L., Wouters E. F. M. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998; 157: 1791-1797.
  7. Celli B. R., Cote C. C., Marin J. M. et al. The body-mass, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350 (10): 1005-1012.
  8. Wagner P. D. Possible mechanisms underlying the development of cachexia in COPD. Eur. Respir. J. 2008; 31: 492-501.
  9. Schols A. M., Wouters E. F. Nutritional abnormalities and supplementation in chronic obstructive pulmonary disease. Clin. Chest Med. 2000; 21: 753-762.
  10. Baarends E. M., Schols A. M. W. J., Westerterp K. R., Wouters E. F. Total daily energy expenditure relative to resting energy expenditure in clinically stable patients with COPD. Thorax 1997; 52: 780-785.
  11. Ferreira I. M., Brooks D., Lacasse Y., Goldstein R. S. Nutritional abnormalities Support for individuals with COPD: a meta-analysis. Chest 2000; 117: 672-678.
  12. Auwerx J., Staels B. Leptin. Lancet 1998; 351: 737-742.
  13. Friedman J. M., Halaas J. L. Leptin and the regulation of body weight in mammals. Nature 1998; 395 (6704): 763-770.
  14. Basdevant A., Ciangura C. Leptin: from to energy balance. Bull. Acad. Natl. Med. 2007; 191 (4-5): 887-895.
  15. Merabet E. S., Dagogo-Jack D. W., Coyne S. et al. Increased plasma leptin concentration in end- stage renal disease. J. Clin. Endocrinol. 1997; 82: 847-850.
  16. Grunfeld C., Zhao C., Fuller J. et al. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters: a role for leptin in the anorexia of infection. J. Clin. Invest. 1996; 97: 2152-2157.
  17. De Vos P., Saladin R., Auwerx J., Staels B. Induction of ob gene expression by corticosteroids is accompanied by body weight loss and reduced food intake. J. Biol. Chem. 1995; 270: 15958-15961.
  18. Hugli O., Schutz Y., Fitting J. W. The daily energy expenditure in stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1996; 153: 294-300.
  19. Baarends E. M., Schols A. M. W. J., Pannemans D. L. E. et al. Total free living energy expenditure in patients with severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1997; 155: 549-554.
  20. Schols A. M. W. J., Eva C., Creutzberg E. C. et al. Plasma leptin is related to proinflammatory status and dietary intake in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999; 160: 1220-1226.
  21. Takabatake N., Nakamura H., Abe S. et al. Circulating leptin in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999; 159: 1215-1219.
  22. Lord G. M., Matarese G., Howard J. K. et al. Leptin modulates the T-cell immune respouse and reverses starvation-induced immunosuppression. Nature 1998; 394: 897-901.
  23. Matarese G., Moschos S., Mantzoros C. S. Leptin in immunology. J. Immunol. 2005; 173: 3137-3142.
  24. Bruno A., Chanez P., Chiappara G. et al. Does leptin play a cytokine-like role within the airways of COPD patients? Eur. Respir. J. 2005; 26: 398-405.
  25. Takabatake N., Nakamura H., Minamihaba O. et al. A novel pathophysiologic phenomenon in cachexic pathients with chronic obstructive pulmonary disease: the relationship between the circadian rhythm of circulating leptin and the very low- frequency component of heart rate variability. Am. J. Respir. Crit. Care Med. 2001; 163: 1314-1319.
  26. Murdoch D. R., Rooney E., Dargie H. J. et al. Inappropriately low plasma leptin concentration in the cachexia associated with chronic heart failure. Heart 1999; 82: 352-356.
  27. Global Initiative for Chronic Obstructive Lung Disease (GOLD) Global strategy for diagnosis, management, and prevention ofchronic obstructive pulmonary desease. NHLBI/ WHO workshop report. Last updated 2006. www.goldcopd.org
  28. Kaplan E., Meier P. Nonparametric estimation from incomplete observation. J. Am. Stat. Assoc. 1958; 53: 457-481.
  29. Van de Kamer J. H., Bokkel Huinink H., Weyer H. A rapid method for the determination of fat in feces. J. Biol. Chem. 1949; 177: 347-355.
  30. Беленькая Т. Ю. Распознавание нарушения абсорбции липидов в кишечнике методом Камера. Казан. мед. журн. 1970; 5: 37-38.
  31. Ишмухаметов Л. И. Радиоизотопная диагностика заболеваний органов пищеварения. М.: Медицина; 1979.
  32. Lonnqvist F., Arner P., Nordfors L., Schalling M. Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat. Med. 1995; 1: 950-993.
  33. Rennie M. J., Edwards R. H., Emery R. W. et al. Depressed protein synthesis is the dominant characteristic of muscle wasting and cachexia. Clin. Physiol. 1983; 3: 387-398.
  34. Jagoe R. T., Engelen M. P. Muscle wasting and changes in muscle protein metabolism in chronic obstructive pulmonary disease. Eur. Respir. J. 2003; 46: 52-63.
  35. Grinspoon S., Gulick T., Askari H. et al. Serum leptin levels in woman with anorexia nervosa. J. Clin. Endocrinol. Metabr 1996; 81: 3861-3863.
  36. Grunfeld C., Pang M., Shigenaga J. K. et al. Serum leptin levels in the acquired immunodeficiency syndrome. J. Clin. Endocrinol. 1996; 81: 4342-4346.

Copyright (c) 2010 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies