О молекулярных механизмах воздействия пептидов стандартизированного гидролизата плаценты на функционирование митохондрий
- Авторы: Торшин И.Ю.1, Громова О.А.1, Тихонова О.В.2, Чучалин А.Г.3
-
Учреждения:
- ФИЦ «Информатика и управление» Российской академии наук
- ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича»
- ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
- Выпуск: Том 95, № 12 (2023)
- Страницы: 1133-1140
- Раздел: Оригинальные статьи
- URL: https://journals.rcsi.science/0040-3660/article/view/258741
- DOI: https://doi.org/10.26442/00403660.2023.12.202494
- ID: 258741
Цитировать
Полный текст
Аннотация
Актуальность. Гидролизаты плаценты человека (ГПЧ), начало изучения которых было положено научной школой В.П. Филатова, в настоящее время исследуются посредством современных протеомных технологий. ГПЧ представляют собой перспективное средство для поддержания функции митохондрий и регенерации тканей и органов с высоким содержанием митохондрий (печени, сердечной мышцы, скелетной мускулатуры и др.). Молекулярные механизмы действия ГПЧ практически не изучены.
Цель. Идентификация в составе ГПЧ (Лаеннек, Japan Bioproducts) пептидов, поддерживающих функционирование митохондрий.
Материалы и методы. Данные о химической структуре пептидов собирали посредством масс-спектрометрического эксперимента. Затем для установления аминокислотных последовательностей пептидов применены алгоритмы de novo секвенирования пептидов, основанные на математической теории топологического и метрического анализа хемографов. Биоинформационный анализ пептидного состава ГПЧ осуществлен посредством интегрального метода аннотации белков.
Результаты. Идентифицированы и описаны биологические функции 41 пептида в составе ГПЧ. Среди таргетных белков, активность которых регулируется выявленными пептидами и существенно влияет на функцию митохондрий, представлены каспазы (CASP1, CASP3, CASP4) и другие белки регуляции апоптоза (BCL2, CANPL1, PPARA), митоген-активируемые протеинкиназы (MAPK1, MAPK3, MAPK4, MAPK8, MAPK9, MAPK10, MAPK14), киназы каскада AKT1/GSK3B/MTOR и ряд других таргетных белков (рецептор ADGRG6, ингибитор киназы IKKE ядерного фактора каппа-би (NF-êB), пируватдегидрогеназы 2/3/4, НАД-зависимая деацетилаза сиртуин SIRT1, киназа ULK1).
Заключение. Установлены пептиды ГПЧ, способствующие торможению формирования митохондриальной поры, апоптоза и избыточной аутофагии митохондрий в условиях оксидативного/токсического стресса, хронического воспаления и/или гиперинсулинемии.
Полный текст
Открыть статью на сайте журналаОб авторах
Иван Юрьевич Торшин
ФИЦ «Информатика и управление» Российской академии наук
Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-2659-7998
канд. физ.-мат. наук, канд. хим. наук, вед. науч. сотр. ФИЦ ИУ РАН
Россия, МоскваОльга Алексеевна Громова
ФИЦ «Информатика и управление» Российской академии наук
Автор, ответственный за переписку.
Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-7663-710X
Scopus Author ID: 7003589812
д-р мед. наук, проф., вед. науч. сотр. ФИЦ ИУ РАН
Россия, МоскваОльга Валентиновна Тихонова
ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича»
Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-2810-566X
канд. биол. наук, рук. Центра коллективного пользования «Протеом человека» ФГБНУ «НИИБМХ им. В.Н. Ореховича»
Россия, МоскваАлександр Григорьевич Чучалин
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-6808-5528
акад. РАН, д-р мед. наук, проф., зав. каф. госпитальной терапии педиатрического фак-та, председатель правления Российского респираторного общества
Россия, МоскваСписок литературы
- Максимов В.А., Громова О.А., Диброва Е.А. Сборник авторефератов докторских и кандидатских диссертаций по проблеме тканевой терапии плаценты. М.: Модуль, 2022 [Maksimov VA, Gromova OA, Dibrova EA. Sbornik avtoreferatov doktorskikh i kandidatskikh dissertatsii po probleme tkanevoi terapii platsenty. Moscow: Modul', 2022 (in Russian)].
- Громова О.А., Торшин И.Ю., Чучалин А.Г., Максимов В.А. Гидролизаты плаценты человека: от В.П. Филатова до наших дней. Терапевтический архив. 2022;94(3):434-41 Gromova OA, Torshin IYu, Chuchalin AG, Maximov VA. Human placenta hydrolysates: from V.P. Filatov to the present day: Review. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(3):434–441 (in Russian)]. doi: 10.26442/00403660.2022.03.201408
- Северин Е.С., Алейникова Т.Л., Осипов Е.В., Силаева С.А. Биологическая химия. М.: Медицинское информационное агентство, 2008 [Severin ES, Aleinikova TL, Osipov EV, Silaeva SA. Biologicheskaia khimiia. Moscow: Meditsinskoe informatsionnoe agentstvo, 2008 (in Russian)].
- McClintock CR, Mulholland N, Krasnodembskaya AD. Biomarkers of mitochondrial dysfunction in acute respiratory distress syndrome: A systematic review and meta-analysis. Front Med (Lausanne). 2022;9:1011819. doi: 10.3389/fmed.2022.1011819
- Торшин И.Ю., Громова О.А., Назаренко А.Г. Хондропротекторы как модуляторы нейровоспаления. Неврология, нейропсихиатрия, психосоматика. 2023;15(1):110-8 [Torshin IYu, Gromova OA, Nazarenko AG. Chondroprotectors as modulators of neuroinflammation. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2023;15(1):110-8 (in Russian)]. doi: 10.14412/2074-2711-2023-1-110-118
- Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012;17(3):290-314. doi: 10.1038/mp.2010.136
- Liang L, Chen J, Xiao L, et al. Mitochondrial modulators in the treatment of bipolar depression: A systematic review and meta-analysis. Transl Psychiatry. 2022;12(1):4. doi: 10.1038/s41398-021-01727-7
- Song T, Song X, Zhu C, et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev. 2021;72:101503. doi: 10.1016/j.arr.2021.101503
- Nelson DL, Cox MM. Lehninger Principles of Biochemistry. 7th ed. New York: W.H. Freeman, 2017.
- Громова О.А., Торшин И.Ю., Максимов В.А., и др. Пептиды в составе препарата Лаеннек, способствующие устранению гиперферритинемии и перегрузки железом. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(4):413-25 [Gromova OA, Torshin IYu, Maksimov VA, et al. Peptides contained in the composition of Laennec that contribute to the treatment of hyperferritinemia and iron overload disorders. Farmakoekonomika. Sovremennaya farmakoekonomika i farmakoepidemiologiya = Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020;13(4):413-25 (in Russian)]. doi: 10.17749/2070-4909/farmakoekonomika.2020.070
- Громова О.А., Торшин И.Ю., Тихонова О.В., Згода В.Г. Гепатопротекторные пептиды препарата Лаеннек. Экспериментальная и клиническая гастроэнтерология. 2022;203(7):21-30 [Torshin IYu, Gromova OA, Tikhonova OV, Zgoda VG. Hepatoprotective peptides of the drug Laennec. Experimental and Clinical Gastroenterology. 2022;(7):21-30 (in Russian)]. doi: 10.31146/1682-8658-ecg-203-7-21-30
- Torshin IYu, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: metric approach within the framework of the theory of classification of feature values. Pattern Recognit Image Anal. 2017;27(2):184-99. doi: 10.1134/S1054661817020110
- Torshin IYu, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: Fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognit Image Anal. 2014;24:11-23. doi: 10.1134/S1054661814010209
- Torshin IYu, Rudakov KV. On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables. Pattern Recognit Image Anal. 2019;29(4):654-67. doi: 10.1134/S1054661819040175
- Torshin IYu, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: Factorization approach. Pattern Recognit Image Anal. 2017;27(1):16-28. doi: 10.1134/S1054661817010151
- Torshin IYu. Optimal dictionaries of the final information on the basis of the solvability criterion and their applications in bioinformatics. Pattern Recognit Image Anal. 2013;23(2):319-27. doi: 10.1134/S1054661813020156
- Torshin IYu. Sensing the change from molecular genetics to personalized medicine. New York: Nova Biomedical Books, 2009.
- Mirica SN, Duicu OM, Trancota SL, et al. Magnesium orotate elicits acute cardioprotection at reperfusion in isolated and in vivo rat hearts. Can J Physiol Pharmacol. 2013;91(2):108-15. doi: 10.1139/cjpp-2012-0216
- Sileikyte J, Petronilli V, Zulian A, Ricchelli F. Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor). J Biol Chem. 2011;286(2):1046-53. doi: 10.1074/jbc.M110.172486
- Zhang Y, Dong Y, Xu Z, Xie Z. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore. Med Gas Res. 2012;2(1):20. doi: 10.1186/2045-9912-2-20
- Jorquera R, Tanguay RM. Cyclin B-dependent kinase and caspase-1 activation precedes mitochondrial dysfunction in fumarylacetoacetate-induced apoptosis. FASEB J. 1999;13(15):2284-98. doi: 10.1096/fasebj.13.15.2284
- Shao G, Wang L, Wang X, Fu C. Apaf-1/caspase-4 pyroptosome: A mediator of mitochondrial permeability transition-triggered pyroptosis. Signal Transduct Target Ther. 2021;6(1):116. doi: 10.1038/s41392-021-00524-4
- Blasche S, Mörtl M, Steuber H, et al. The E. coli effector protein NleF is a caspase inhibitor. PLoS One. 2013;8(3):e58937. doi: 10.1371/journal.pone.0058937
- Wen S, Wang L, Zhang W, et al. Induction of mitochondrial apoptosis pathway mediated through caspase-8 and c-Jun N-terminal kinase by cadmium-activated Fas in rat cortical neurons. Metallomics. 2021;13(7):mfab042. doi: 10.1093/mtomcs/mfab042
- Samraj AK, Sohn D, Schulze-Osthoff K, Schmitz I. Loss of caspase-9 reveals its essential role for caspase-2 activation and mitochondrial membrane depolarization. Mol Biol Cell. 2007;18(1):84-93. doi: 10.1091/mbc.e06-04-0263
- Chen M, Guerrero AD, Huang L, et al. Caspase-9-induced mitochondrial disruption through cleavage of anti-apoptotic BCL-2 family members. J Biol Chem. 2007;282(46):33888-95. doi: 10.1074/jbc.M702969200
- Reed JC, Zha H, Aime-Sempe C, et al. Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv Exp Med Biol. 1996;406:99-112. PMID: 8910675
- Shintani-Ishida K, Yoshida K. Mitochondrial m-calpain opens the mitochondrial permeability transition pore in ischemia-reperfusion. Int J Cardiol. 2015;197:26-32. doi: 10.1016/j.ijcard.2015.06.010
- Luo T, Yue R, Hu H, et al. PD150606 protects against ischemia/reperfusion injury by preventing μ-calpain-induced mitochondrial apoptosis. Arch Biochem Biophys. 2015;586:1-9. doi: 10.1016/j.abb.2015.06.005
- Plevin MJ, Mills MM, Ikura M. The LxxLL motif: A multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci. 2005;30(2):66-9. doi: 10.1016/j.tibs.2004.12.001
- Gaikwad AB, Viswanad B, Ramarao P. PPAR gamma agonists partially restores hyperglycemia induced aggravation of vascular dysfunction to angiotensin II in thoracic aorta isolated from rats with insulin resistance. Pharmacol Res. 2007;55(5):400-7. doi: 10.1016/j.phrs.2007.01.015
- Cree MG, Newcomer BR, Herndon DN, Wolfe RR. PPAR-alpha agonism improves whole body and muscle mitochondrial fat oxidation, but does not alter intracellular fat concentrations in burn trauma children in a randomized controlled trial. Nutr Metab (Lond). 2007;4:9. doi: 10.1186/1743-7075-4-9
- Wu JS, Lin TN, Wu KK. Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J Cell Physiol. 2009;220(1):58-71. doi: 10.1002/jcp.21730
- Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene. 2013;513(1):1-13. doi: 10.1016/j.gene.2012.10.033
- Cook SJ, Stuart K, Gilley R, Sale MJ. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J. 2017;284(24):4177-95. doi: 10.1111/febs.14122
- Nowak G, Clifton GL, Godwin ML, Bakajsova D. Activation of ERK1/2 pathway mediates oxidant-induced decreases in mitochondrial function in renal cells. Am J Physiol Renal Physiol. 2006;291(4):F840-55. doi: 10.1152/ajprenal.00219.2005
- Lu TH, Hsieh SY, Yen CC, et al. Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury. Toxicol Lett. 2011;204(1):71-80. doi: 10.1016/j.toxlet.2011.04.013
- Liu XH, Pan LL, Gong QH, Zhu YZ. Antiapoptotic effect of novel compound from Herba leonuri – leonurine (SCM-198): A mechanism through inhibition of mitochondria dysfunction in H9c2 cells. Curr Pharm Biotechnol. 2010;11(8):895-905. doi: 10.2174/138920110793262015
- Palka G, Geraci L, Calabrese G, et al. A new case of chronic myelogenous leukemia with 14q+ marker and review of the literature. Ann Genet. 1988;31(3):190-2. PMID: 3066283
- Yang JY, Yeh HY, Lin K, Wang PH. Insulin stimulates Akt translocation to mitochondria: implications on dysregulation of mitochondrial oxidative phosphorylation in diabetic myocardium. J Mol Cell Cardiol. 2009;46(6):919-26. doi: 10.1016/j.yjmcc.2009.02.015
- Kandezi N, Mohammadi M, Ghaffari M, et al. Novel insight to neuroprotective potential of curcumin: A mechanistic review of possible involvement of mitochondrial biogenesis and PI3/Akt/GSK3 or PI3/Akt/CREB/BDNF signaling pathways. Int J Mol Cell Med. 2020;9(1):1-32. doi: 10.22088/IJMCM.BUMS.9.1.1
- Sage-Schwaede A, Engelstad K, Salazar R, et al. Exploring mTOR inhibition as treatment for mitochondrial disease. Ann Clin Transl Neurol. 2019;6(9):1877-81. doi: 10.1002/acn3.50846
- McCormack S, Polyak E, Ostrovsky J, Dingley SD. Pharmacologic targeting of sirtuin and PPAR signaling improves longevity and mitochondrial physiology in respiratory chain complex I mutant Caenorhabditis elegans. Mitochondrion. 2015;22:45-59. doi: 10.1016/j.mito.2015.02.005
- Sato M, Sato K, Tomura K, et al. The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in Caenorhabditis elegans. Nat Cell Biol. 2018;20(1):81-91. doi: 10.1038/s41556-017-0008-9
- Mukhopadhyay S, Das DN, Panda PK, et al. Autophagy protein Ulk1 promotes mitochondrial apoptosis through reactive oxygen species. Free Radic Biol Med. 2015;89:311-21. doi: 10.1016/j.freeradbiomed.2015.07.159
Дополнительные файлы
