Molecular mechanisms of the effect of standardized placental hydrolysate peptides on mitochondria functioning

Cover Page

Cite item

Full Text

Abstract

Background. Human placenta hydrolysates (HPH), the study of which was initiated by the scientific school of Vladimir P. Filatov, are currently being investigated using modern proteomic technologies. HPH is a promising tool for maintaining the function of mitochondria and regenerating tissues and organs with a high content of mitochondria (liver, heart muscle, skeletal muscles, etc.). The molecular mechanisms of action of HPH are practically not studied.

Aim. Identification of mitochondrial support mitochondrial function-supporting peptides in HPH (Laennec, produced by Japan Bioproducts).

Materials and methods. Data on the chemical structure of the peptides were collected through a mass spectrometric experiment. Then, to establish the amino acid sequences of the peptides, de novo peptide sequencing algorithms based on the mathematical theory of topological and metric analysis of chemographs were applied. Bioinformatic analysis of the peptide composition of HPH was carried out using the integral protein annotation method.

Results. The biological functions of 41 peptides in the composition of HPH have been identified and described. Among the target proteins, the activity of which is regulated by the identified peptides and significantly affects the function of mitochondria, are caspases (CASP1, CASP3, CASP4) and other proteins regulating apoptosis (BCL2, CANPL1, PPARA), MAP kinases (MAPK1, MAPK3, MAPK4, MAPK8, MAPK9 , MAPK10, MAPK14), AKT1/GSK3B/MTOR cascade kinases, and a number of other target proteins (ADGRG6 receptor, inhibitor of NF-êB kinase IKKE, pyruvate dehydrogenase 2/3/4, SIRT1 sirtuin deacetylase, ULK1 kinase).

Conclusion. HPH peptides have been identified that promote inhibition of mitochondrial pore formation, apoptosis, and excessive mitochondrial autophagy under conditions of oxidative/toxic stress, chronic inflammation, and/or hyperinsulinemia.

About the authors

Ivan Yu. Torshin

Computer Science and Control

Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-2659-7998

канд. физ.-мат. наук, канд. хим. наук, вед. науч. сотр. ФИЦ ИУ РАН

Russian Federation, Moscow

Olga A. Gromova

Computer Science and Control

Author for correspondence.
Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-7663-710X
Scopus Author ID: 7003589812

д-р мед. наук, проф., вед. науч. сотр. ФИЦ ИУ РАН

Russian Federation, Moscow

Olga V. Tikhonova

Orekhovich Research Institute of Biomedical Chemistry

Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-2810-566X

канд. биол. наук, рук. Центра коллективного пользования «Протеом человека» ФГБНУ «НИИБМХ им. В.Н. Ореховича»

Russian Federation, Moscow

Alexander G. Chuchalin

Pirogov Russian National Research Medical University

Email: unesco.gromova@gmail.com
ORCID iD: 0000-0002-6808-5528

акад. РАН, д-р мед. наук, проф., зав. каф. госпитальной терапии педиатрического фак-та, председатель правления Российского респираторного общества

Russian Federation, Moscow

References

  1. Максимов В.А., Громова О.А., Диброва Е.А. Сборник авторефератов докторских и кандидатских диссертаций по проблеме тканевой терапии плаценты. М.: Модуль, 2022 [Maksimov VA, Gromova OA, Dibrova EA. Sbornik avtoreferatov doktorskikh i kandidatskikh dissertatsii po probleme tkanevoi terapii platsenty. Moscow: Modul', 2022 (in Russian)].
  2. Громова О.А., Торшин И.Ю., Чучалин А.Г., Максимов В.А. Гидролизаты плаценты человека: от В.П. Филатова до наших дней. Терапевтический архив. 2022;94(3):434-41 Gromova OA, Torshin IYu, Chuchalin AG, Maximov VA. Human placenta hydrolysates: from V.P. Filatov to the present day: Review. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(3):434–441 (in Russian)]. doi: 10.26442/00403660.2022.03.201408
  3. Северин Е.С., Алейникова Т.Л., Осипов Е.В., Силаева С.А. Биологическая химия. М.: Медицинское информационное агентство, 2008 [Severin ES, Aleinikova TL, Osipov EV, Silaeva SA. Biologicheskaia khimiia. Moscow: Meditsinskoe informatsionnoe agentstvo, 2008 (in Russian)].
  4. McClintock CR, Mulholland N, Krasnodembskaya AD. Biomarkers of mitochondrial dysfunction in acute respiratory distress syndrome: A systematic review and meta-analysis. Front Med (Lausanne). 2022;9:1011819. doi: 10.3389/fmed.2022.1011819
  5. Торшин И.Ю., Громова О.А., Назаренко А.Г. Хондропротекторы как модуляторы нейровоспаления. Неврология, нейропсихиатрия, психосоматика. 2023;15(1):110-8 [Torshin IYu, Gromova OA, Nazarenko AG. Chondroprotectors as modulators of neuroinflammation. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2023;15(1):110-8 (in Russian)]. doi: 10.14412/2074-2711-2023-1-110-118
  6. Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012;17(3):290-314. doi: 10.1038/mp.2010.136
  7. Liang L, Chen J, Xiao L, et al. Mitochondrial modulators in the treatment of bipolar depression: A systematic review and meta-analysis. Transl Psychiatry. 2022;12(1):4. doi: 10.1038/s41398-021-01727-7
  8. Song T, Song X, Zhu C, et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev. 2021;72:101503. doi: 10.1016/j.arr.2021.101503
  9. Nelson DL, Cox MM. Lehninger Principles of Biochemistry. 7th ed. New York: W.H. Freeman, 2017.
  10. Громова О.А., Торшин И.Ю., Максимов В.А., и др. Пептиды в составе препарата Лаеннек, способствующие устранению гиперферритинемии и перегрузки железом. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(4):413-25 [Gromova OA, Torshin IYu, Maksimov VA, et al. Peptides contained in the composition of Laennec that contribute to the treatment of hyperferritinemia and iron overload disorders. Farmakoekonomika. Sovremennaya farmakoekonomika i farmakoepidemiologiya = Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020;13(4):413-25 (in Russian)]. doi: 10.17749/2070-4909/farmakoekonomika.2020.070
  11. Громова О.А., Торшин И.Ю., Тихонова О.В., Згода В.Г. Гепатопротекторные пептиды препарата Лаеннек. Экспериментальная и клиническая гастроэнтерология. 2022;203(7):21-30 [Torshin IYu, Gromova OA, Tikhonova OV, Zgoda VG. Hepatoprotective peptides of the drug Laennec. Experimental and Clinical Gastroenterology. 2022;(7):21-30 (in Russian)]. doi: 10.31146/1682-8658-ecg-203-7-21-30
  12. Torshin IYu, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: metric approach within the framework of the theory of classification of feature values. Pattern Recognit Image Anal. 2017;27(2):184-99. doi: 10.1134/S1054661817020110
  13. Torshin IYu, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: Fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognit Image Anal. 2014;24:11-23. doi: 10.1134/S1054661814010209
  14. Torshin IYu, Rudakov KV. On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables. Pattern Recognit Image Anal. 2019;29(4):654-67. doi: 10.1134/S1054661819040175
  15. Torshin IYu, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: Factorization approach. Pattern Recognit Image Anal. 2017;27(1):16-28. doi: 10.1134/S1054661817010151
  16. Torshin IYu. Optimal dictionaries of the final information on the basis of the solvability criterion and their applications in bioinformatics. Pattern Recognit Image Anal. 2013;23(2):319-27. doi: 10.1134/S1054661813020156
  17. Torshin IYu. Sensing the change from molecular genetics to personalized medicine. New York: Nova Biomedical Books, 2009.
  18. Mirica SN, Duicu OM, Trancota SL, et al. Magnesium orotate elicits acute cardioprotection at reperfusion in isolated and in vivo rat hearts. Can J Physiol Pharmacol. 2013;91(2):108-15. doi: 10.1139/cjpp-2012-0216
  19. Sileikyte J, Petronilli V, Zulian A, Ricchelli F. Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor). J Biol Chem. 2011;286(2):1046-53. doi: 10.1074/jbc.M110.172486
  20. Zhang Y, Dong Y, Xu Z, Xie Z. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore. Med Gas Res. 2012;2(1):20. doi: 10.1186/2045-9912-2-20
  21. Jorquera R, Tanguay RM. Cyclin B-dependent kinase and caspase-1 activation precedes mitochondrial dysfunction in fumarylacetoacetate-induced apoptosis. FASEB J. 1999;13(15):2284-98. doi: 10.1096/fasebj.13.15.2284
  22. Shao G, Wang L, Wang X, Fu C. Apaf-1/caspase-4 pyroptosome: A mediator of mitochondrial permeability transition-triggered pyroptosis. Signal Transduct Target Ther. 2021;6(1):116. doi: 10.1038/s41392-021-00524-4
  23. Blasche S, Mörtl M, Steuber H, et al. The E. coli effector protein NleF is a caspase inhibitor. PLoS One. 2013;8(3):e58937. doi: 10.1371/journal.pone.0058937
  24. Wen S, Wang L, Zhang W, et al. Induction of mitochondrial apoptosis pathway mediated through caspase-8 and c-Jun N-terminal kinase by cadmium-activated Fas in rat cortical neurons. Metallomics. 2021;13(7):mfab042. doi: 10.1093/mtomcs/mfab042
  25. Samraj AK, Sohn D, Schulze-Osthoff K, Schmitz I. Loss of caspase-9 reveals its essential role for caspase-2 activation and mitochondrial membrane depolarization. Mol Biol Cell. 2007;18(1):84-93. doi: 10.1091/mbc.e06-04-0263
  26. Chen M, Guerrero AD, Huang L, et al. Caspase-9-induced mitochondrial disruption through cleavage of anti-apoptotic BCL-2 family members. J Biol Chem. 2007;282(46):33888-95. doi: 10.1074/jbc.M702969200
  27. Reed JC, Zha H, Aime-Sempe C, et al. Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv Exp Med Biol. 1996;406:99-112. PMID: 8910675
  28. Shintani-Ishida K, Yoshida K. Mitochondrial m-calpain opens the mitochondrial permeability transition pore in ischemia-reperfusion. Int J Cardiol. 2015;197:26-32. doi: 10.1016/j.ijcard.2015.06.010
  29. Luo T, Yue R, Hu H, et al. PD150606 protects against ischemia/reperfusion injury by preventing μ-calpain-induced mitochondrial apoptosis. Arch Biochem Biophys. 2015;586:1-9. doi: 10.1016/j.abb.2015.06.005
  30. Plevin MJ, Mills MM, Ikura M. The LxxLL motif: A multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci. 2005;30(2):66-9. doi: 10.1016/j.tibs.2004.12.001
  31. Gaikwad AB, Viswanad B, Ramarao P. PPAR gamma agonists partially restores hyperglycemia induced aggravation of vascular dysfunction to angiotensin II in thoracic aorta isolated from rats with insulin resistance. Pharmacol Res. 2007;55(5):400-7. doi: 10.1016/j.phrs.2007.01.015
  32. Cree MG, Newcomer BR, Herndon DN, Wolfe RR. PPAR-alpha agonism improves whole body and muscle mitochondrial fat oxidation, but does not alter intracellular fat concentrations in burn trauma children in a randomized controlled trial. Nutr Metab (Lond). 2007;4:9. doi: 10.1186/1743-7075-4-9
  33. Wu JS, Lin TN, Wu KK. Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J Cell Physiol. 2009;220(1):58-71. doi: 10.1002/jcp.21730
  34. Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene. 2013;513(1):1-13. doi: 10.1016/j.gene.2012.10.033
  35. Cook SJ, Stuart K, Gilley R, Sale MJ. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J. 2017;284(24):4177-95. doi: 10.1111/febs.14122
  36. Nowak G, Clifton GL, Godwin ML, Bakajsova D. Activation of ERK1/2 pathway mediates oxidant-induced decreases in mitochondrial function in renal cells. Am J Physiol Renal Physiol. 2006;291(4):F840-55. doi: 10.1152/ajprenal.00219.2005
  37. Lu TH, Hsieh SY, Yen CC, et al. Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury. Toxicol Lett. 2011;204(1):71-80. doi: 10.1016/j.toxlet.2011.04.013
  38. Liu XH, Pan LL, Gong QH, Zhu YZ. Antiapoptotic effect of novel compound from Herba leonuri – leonurine (SCM-198): A mechanism through inhibition of mitochondria dysfunction in H9c2 cells. Curr Pharm Biotechnol. 2010;11(8):895-905. doi: 10.2174/138920110793262015
  39. Palka G, Geraci L, Calabrese G, et al. A new case of chronic myelogenous leukemia with 14q+ marker and review of the literature. Ann Genet. 1988;31(3):190-2. PMID: 3066283
  40. Yang JY, Yeh HY, Lin K, Wang PH. Insulin stimulates Akt translocation to mitochondria: implications on dysregulation of mitochondrial oxidative phosphorylation in diabetic myocardium. J Mol Cell Cardiol. 2009;46(6):919-26. doi: 10.1016/j.yjmcc.2009.02.015
  41. Kandezi N, Mohammadi M, Ghaffari M, et al. Novel insight to neuroprotective potential of curcumin: A mechanistic review of possible involvement of mitochondrial biogenesis and PI3/Akt/GSK3 or PI3/Akt/CREB/BDNF signaling pathways. Int J Mol Cell Med. 2020;9(1):1-32. doi: 10.22088/IJMCM.BUMS.9.1.1
  42. Sage-Schwaede A, Engelstad K, Salazar R, et al. Exploring mTOR inhibition as treatment for mitochondrial disease. Ann Clin Transl Neurol. 2019;6(9):1877-81. doi: 10.1002/acn3.50846
  43. McCormack S, Polyak E, Ostrovsky J, Dingley SD. Pharmacologic targeting of sirtuin and PPAR signaling improves longevity and mitochondrial physiology in respiratory chain complex I mutant Caenorhabditis elegans. Mitochondrion. 2015;22:45-59. doi: 10.1016/j.mito.2015.02.005
  44. Sato M, Sato K, Tomura K, et al. The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in Caenorhabditis elegans. Nat Cell Biol. 2018;20(1):81-91. doi: 10.1038/s41556-017-0008-9
  45. Mukhopadhyay S, Das DN, Panda PK, et al. Autophagy protein Ulk1 promotes mitochondrial apoptosis through reactive oxygen species. Free Radic Biol Med. 2015;89:311-21. doi: 10.1016/j.freeradbiomed.2015.07.159

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structures of caspases and calpain. The binding surfaces in the active site of kinases with which Laennec peptides interact are shown: a – spatial structure of caspases (e.g., CASP1, PDB file 1bmq); b – spatial structure of μ-calpain, PDB file 4ZCM.

Download (117KB)
3. Fig. 2. MAPK spatial structure. The ligand binding surface in the active kinase site with which Laennec peptides can interact is shown: a – by the example of MAPK3 (ERK1) and MAPK1 (ERK2), PDB file 2ZOQ; b – MAPK8 (JNK1, PDB file 2XS0); c – MAPK9 (JNK2, PDB file 3NPC).

Download (112KB)
4. Fig. 3. Protein kinase B (PKB) and its substrates: a – spatial structure of PKB (PDB file 5KCV); b – substrate patterns of the amino acid sequence phosphorylated by PKB.

Download (120KB)
5. Fig. 4. SIRT1 and ULK1 kinase: a – spatial structure of SIRT1 (PDB file 4ZZH); b – spatial structure of ULK1 kinases (PDB file 4WNO).

Download (121KB)

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies