Systemic lupus erythematosus and antiphospholipid syndrome: past, present, future

Cover Page

Cite item

Full Text

Abstract

Immune-inflammatory (autoimmune and autoinflammatory) rheumatic diseases are widespread severe chronic inflammatory diseases and also “models” for studying the fundamental mechanisms of pathogenesis and approach to pharmacotherapy of other diseases associated with autoimmunity and/or autoinflammation. Uncontrolled inflammation leading to hypercoagulation forms the basis of “thromboinflammation”, which is considered a universal pathogenetic mechanism of organ involvement in immune-inflammatory rheumatic diseases, as well as in COVID-19 and atherosclerotic vascular lesions (atherothrombosis). Thrombo-inflammatory mechanisms play a crucial role in systemic lupus erythematosus and antiphospholipid syndrome. Russian rheumatology, under the leadership of academician Valentina Alexandrovna Nasonova, greatly contributed to the research of these disorders. This article addresses the current view about the overlapping pathogenetic mechanisms of thrombosis in systemic lupus erythematosus and antiphospholipid syndrome, the relevance of these studies during the COVID-19 pandemic, and the prospects for antithrombotic and anti-inflammatory therapy.

About the authors

Evgeny L. Nasonov

Nasonova Research Institute of Rheumatology; Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: nasonov@irramn.ru
ORCID iD: 0000-0002-1598-8360

доктор медицинских наук, профессор академик РАН, научный руководитель, заведующий кафедрой Ревматологии

Russian Federation, Moscow; Moscow

Tatiana M. Reshetnyak

Nasonova Research Institute of Rheumatology

Email: nasonov@irramn.ru
ORCID iD: 0000-0003-3552-2522

доктор медицинских наук, профессор зав. лаборат. Тромбовоспаления

Russian Federation, Moscow

Sergey K. Solovyev

Nasonova Research Institute of Rheumatology

Email: nasonov@irramn.ru
ORCID iD: 0000-0002-5206-1732

доктор медицинских наук, профессор, научный консультант лаборатории системной красной волчанки

Russian Federation, Moscow

Tatiana V. Popkova

Nasonova Research Institute of Rheumatology

Email: nasonov@irramn.ru
ORCID iD: 0000-0001-5793-4689

доктор медицинских наук, нач. отдела системных ревматических заболеваний

Russian Federation, Moscow

References

  1. Насонов Е.Л. Достижения ревматологии в XXI веке. Научно-практическая ревматология. 2014;52(2):133-40 [Nasonov EL. Achievements in rheumatology in the XXI century. Rheumatology Science and Practice. 2014;52(2):133-40 (in Russian)]. doi: 10.14412/1995-4484-2014-133-140
  2. Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019;133(9):906-18. doi: 10.1182/blood-2018-11-882993
  3. Wagner DD, Heger LA. Thromboinflammation: From Atherosclerosis to COVID-19. Arterioscler Thromb Vasc Biol. 2022;42(9):1103-12. doi: 10.1161/ATVBAHA.122.317162
  4. Насонов Е.Л., Бекетова Т.В., Решетняк Т.М., и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020;58(4):353-67 [Nasonov EL, Beketova TV, Reshetnyak TM, et al. Coronavirus disease 2019 (COVID-19) and immune-mediated inflammatory rheumatic diseases: at the crossroads of thromboinflammation and autoimmunity. Rheumatology Science and Practice. 2020;58(4):353-67 (in Russian)]. doi: 10.47360/1995-4484-2020-353-367
  5. Насонов Е.Л., Решетняк Т.М., Алекберова З.С. Тромботическая микроангиопатия в ревматологии: связь тромбовоспаления и аутоиммунитета. Терапевтический архив. 2020;92(5):4-14 [Nasonov EL, Reshetnyak TM, Alekberova ZS. Thrombotic microangiopathy in rheumatology: the relationship of thrombosis and autoimmunity. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(5):4-14 (in Russian)]. doi: 10.26442/00403660.2020.05.000697
  6. Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039. doi: 10.1038/nrdp.2016.39
  7. Тареев Е.М., Виноградова О.М., Насонова В.А., Гусева Н.Коллагенозы. М., 1965 [Tareev EM, Vinogradova OM, Nasonova VA, Guseva NG. Kollagenozy. Moscow, 1965 (in Russian)].
  8. Насонова В.А. Системная красная волчанка. М.: Медицина, 1972 [Nasonova VA. Sistemnaia krasnaia volchanka. Moscow: Meditsina, 1972 (in Russian)].
  9. Zamulaeva IA, Lekakh IV, Kiseleva VI, et al. Natural hidden antibodies reacting with DNA or cardiolipin bind to thymocytes and evoke their death. FEBS Lett. 1997;413(2):231-5. doi: 10.1016/s0014-5793(97)00843-0
  10. Alekberova ZS, Parfanovich MI, Nasonova VA, Zhdanov VM. Molecular pathogenesis of systemic lupus erythematosus. Arch Virol. 1975;47(2):109-21. doi: 10.1007/BF01320551
  11. Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 2020;21(6):605-14. doi: 10.1038/s41590-020-0677-6
  12. Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis. 2023. doi: 10.1136/ard-2022-223741
  13. Насонов Е.Л., Авдеева А.С. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология. 2019;57(4):452-61 [Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type I interferon: New evidence. Rheumatology Science and Practice. 2019;57(4):452-61 (in Russian)]. doi: 10.14412/1995-4484-2019-452-461
  14. Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat Rev Rheumatol. 2022;18(10):575-90. doi: 10.1038/s41584-022-00826-z
  15. Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019;78(9):1151-9. doi: 10.1136/annrheumdis-2018-214819
  16. Aringer M, Alarcón-Riquelme ME, Clowse M, et al. A glimpse into the future of systemic lupus erythematosus. Ther Adv Musculoskelet Dis. 2022;14:1759720X221086719. doi: 10.1177/1759720X221086719
  17. Allen ME, Rus V, Szeto GL. Leveraging Heterogeneity in Systemic Lupus Erythematosus for New Therapies. Trends Mol Med. 2021;27(2):152-71. doi: 10.1016/j.molmed.2020.09.009
  18. Pisetsky DS, Lipsky PE. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat Rev Rheumatol. 2020;16(10):565-79. doi: 10.1038/s41584-020-0480-7
  19. Sciascia S, Roccatello D, Radin M, et al. Differentiating between UCTD and early-stage SLE: From definitions to clinical approach. Nat Rev Rheumatol. 2022;18(1):9-21. doi: 10.1038/s41584-021-00710-2
  20. Насонов Е.Л., Попкова Т.В., Панафидина Т.А. Проблемы ранней системной красной волчанки в период пандемии COVID-19. Научно-практическая ревматология. 2021;59(2):119-28 [Nasonov EL, Popkova TV, Panafidina TA. Problems of early diagnosis of systemic lupus erythematosus during the COVID-19 pandemic. Rheumatology Science and Practice. 2021;59(2):119-28 (in Russian)]. doi: 10.47360/1995-4484-2021-119-128
  21. Антифосфолипидный синдром. По ред. Е.Л. Насонова. Москва: Литтерра, 2004 [Antifosfolipidnyi sindrom. Pod red. EL Nasonova. Moscow: Litterra, 2004 (in Russian)].
  22. Решетняк Т.М. Антифосфолипидный синдром: диагностика и клинические проявления (лекция). Научно-практическая ревматология. 2014;52(1):56-71 [Reshetnyak TM. Antiphospholipid syndrome: diagnosis and clinical manifestations (a lecture). Rheumatology Science and Practice. 2014;52(1):56-71 (in Russian)]. doi: 10.14412/1995-4484-2014-56-71
  23. Schreiber K, Sciascia S, de Groot PG, et al. Antiphospholipid syndrome. Nat Rev Dis Primers. 2018;4:18005. doi: 10.1038/nrdp.2018.5
  24. Hughes GRV, Harris EN, Gharavi AE. The anticardiolipin syndrome. J Rheumatol. 1986;13:486-9.
  25. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295-306. doi: 10.1111/j.1538-7836.2006.01753.x
  26. Pignatelli P, Ettorre E, Menichelli D, et al. Seronegative antiphospholipid syndrome: refining the value of “non-criteria” antibodies for diagnosis and clinical management. Haematologica. 2020;105(3):562-72. doi: 10.3324/haematol.2019.221945
  27. Sciascia S, Amigo MC, Roccatello D, Khamashta M. Diagnosing antiphospholipid syndrome: «extra-criteria» manifestations and technical advances. Nat Rev Rheumatol. 2017;13(9):548-60. doi: 10.1038/nrrheum.2017.124
  28. Насонова В.А., Алекберова З.С., Калашникова Л.А., Решетняк Т.М. Поздняя диагностика системной красной волчанки с антифосфолипидным синдромом. Терапевтический архив. 1997;11:50-4 [Nasonova VA, Alekberova ZS, Kalashnikova LA, Reshenyak TM. Late diagnosis of systemic lupus erythematosus with antiphospholipid syndrome. Terapevticheskii Arkhiv (Ter. Arkh.). 1997;11:50-4 (in Russian)].
  29. Решетняк Т.М., Котельникова Т.Н., Калашникова Л.А., и др. Клинико-иммунологические проявления первичного и вторичного антифосфолипидного синдрома. Научно- практическая ревматология. 2004;42(4):15-23 [Reshetnyak TM, Kotelnikova TN, Kalashnikova LA, et al. Clinical and immunological features of primary and secondary antiphospholipid syndrome. Rheumatology Science and Practice. 2004;42(4):15-23 (in Russian)]. doi: 10.14412/1995-4484-2004-796
  30. Nossent J, Cikes N, Kiss E, et al. Current causes of death in systemic lupus erythematosus in Europe, 2000–2004: relation to disease activity and damage accrual. Lupus. 2007;16(5):309-17. doi: 10.1177/0961203307077987
  31. Решетняк Т.М., Алекберова З.С. Исследование антифосфоли.идного синдрома: основные этапы и достижения. В кн.: Достижения ревматологии в начале XXI века. Под ред. aкад. Е.Л. Насонова. Москва, ИМА-ПРЕСС, 2018; c. 122-37 [Reshetniak TM, Alekberova ZS. Issledovaniie antifosfolipidnogo sindroma: osnovnyie etapy i dostizheniia. V kn.: Dostizheniia revmatologii v nachale XXI veka. Pod red. akad. EL Nasonova. Moscow, IMA-PRESS, 2018; p. 122-37 (in Russian)].
  32. Gómez-Puerta JA, Cervera R. Diagnosis and classification of the antiphospholipid syndrome. J Autoimmun. 2014;48-49:20-5. doi: 10.1016/j.jaut.2014.01.006
  33. Решетняк Т.М., Чельдиева Ф.А., Нурбаева К.С., и др. Антифосфолипидный синдром: диагностика, механизм развития, вопросы терапии. Тромбоз, гемостаз и реология. 2020;(4):4-21 [Reshetnyak TM, Cheldieva FA, Nurbayeva KS, et al. Antiphospholipid syndrome: diagnosis, development mechanism, therapy issues. Thrombosis, Hemostasis and Rheology. 2020;(4):4-21 (in Russian)]. doi: 10.25555/THR.2020.4.0940
  34. Cervera R, Rodríguez-Pintó I, Espinosa G. The diagnosis and clinical management of the catastrophic antiphospholipid syndrome: A comprehensive review. J Autoimmun. 2018;92:1-11. doi: 10.1016/j.jaut.2018.05.007
  35. Knight JS, Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin Immunopathol. 2022;44(3):347-62. doi: 10.1007/s00281-022-00916-w
  36. Arreola-Diaz R, Majluf-Cruz A, Sanchez-Torres LE, Hernandez-Juarez J. The Pathophysiology of The Antiphospholipid Syndrome: A Perspective From The Blood Coagulation System. Clin Appl Thromb Hemost. 2022;28:10760296221088576. doi: 10.1177/10760296221088576
  37. Serrano M, Espinosa G, Serrano A, Cervera R. Antigens and Antibodies of the Antiphospholipid Syndrome as New Allies in the Pathogenesis of COVID-19 Coagulopathy. Int J Mol Sci. 2022;23(9):4946. doi: 10.3390/ijms23094946
  38. Chaturvedi S, Braunstein EM, Brodsky RA. Antiphospholipid syndrome: Complement activation, complement gene mutations, and therapeutic implications. J Thromb Haemost. 2021;19(3):607-16. doi: 10.1111/jth.15082
  39. Tan Y, Liu Q, Li Z, et al. Epigenetics-mediated pathological alternations and their potential in antiphospholipid syndrome diagnosis and therapy. Autoimmun Rev. 2022;21(8):103130. doi: 10.1016/j.autrev.2022.103130
  40. van Mourik DJM, Salet DM, Middeldorp S, et al. The role of the intestinal microbiome in antiphospholipid syndrome. Front Immunol. 2022;13:954764. doi: 10.3389/fimmu.2022.954764
  41. Yan H, Li B, Su R, et al. Preliminary Study on the Imbalance Between Th17 and Regulatory T Cells in Antiphospholipid Syndrome. Front Immunol. 2022;13:873644. doi: 10.3389/fimmu.2022.873644
  42. van den Hoogen LL, Bisoendial RJ. B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy? J Clin Med. 2022;12(1):18. doi: 10.3390/jcm12010018
  43. Cecchi I, Radin M, Rodríguez-Carrio J, et al. Utilizing type I interferon expression in the identification of antiphospholipid syndrome subsets. Expert Rev Clin Immunol. 2021;17(4):395-406. doi: 10.1080/1744666X.2021.1901581
  44. Hisada R, Kato M, Sugawara E, et al. Circulating plasmablasts contribute to antiphospholipid antibody production, associated with type I interferon upregulation. J Thromb Haemost. 2019;17(7):1134-43. doi: 10.1111/jth.14427
  45. Arantes FT, Mazetto BM, Saraiva SS, et al. Inflammatory markers in thrombosis associated with primary antiphospholipid syndrome. J Thromb Thrombolysis. 2020;50(4):772-81. doi: 10.1007/s11239-020-02155-y
  46. Long Y, Li W, Feng J, et al. Follicular helper and follicular regulatory T cell subset imbalance is associated with higher activated B cells and abnormal autoantibody production in primary anti-phospholipid syndrome patients. Clin Exp Immunol. 2021;206(2):141-52. doi: 10.1111/cei.13647
  47. McDonnell T, Wincup C, Buchholz I, et al. The role of beta-2-glycoprotein I in health and disease associating structure with function: More than just APS. Blood Rev. 2020;39:100610. doi: 10.1016/j.blre.2019.100610
  48. Насонов Е.Л. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-32 [Nasonov EL. Coronavirus disease 2019 (COVID-19): a rheumatologist’s thoughts. Rheumatology Science and Practice. 2020;58(2):123-32 (in Russian)]. doi: 10.14412/1995-4484-20
  49. Nasonov EL, Samsonov MY, Lila AM. Coronavirus Infection 2019 (COVID-19) and Autoimmunity. Her Russ Acad Sci. 2022;92(4):398-403. doi: 10.1134/S1019331622040062
  50. Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med. 2021;27(1):28-33. doi: 10.1038/s41591-020-01202-8
  51. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255-73. doi: 10.1056/NEJMra2026131
  52. McGonagle D, Ramanan AV, Bridgewood C. Immune cartography of macrophage activation syndrome in the COVID-19 era. Nat Rev Rheumatol. 2021;17(3):145-57. doi: 10.1038/s41584-020-00571-1
  53. Shi H, Zuo Y, Navaz S, et al. Endothelial Cell-Activating Antibodies in COVID-19. Arthritis Rheumatol. 2022;74(7):1132-8. doi: 10.1002/art.42094
  54. Hollerbach A, Müller-Calleja N, Pedrosa D, et al. Pathogenic lipid-binding antiphospholipid antibodies are associated with severity of COVID-19. J Thromb Haemost. 2021;19(9):2335-47. doi: 10.1111/jth.15455
  55. Zuniga M, Gomes C, Carsons SE, et al. Autoimmunity to annexin A2 predicts mortality among hospitalised COVID-19 patients. Eur Respir J. 2021;58(4):2100918. doi: 10.1183/13993003.00918-2021
  56. Doevelaar AAN, Bachmann M, Hölzer B, et al. Generation of Inhibitory Autoantibodies to ADAMTS13 in Coronavirus Disease 2019. medRxiv. 2021.03.18.21253869. doi: 10.1101/2021.03.18.21253869
  57. Lee SJ, Kim JE, Han KS, Kim HK. Thrombotic risk of reduced ADAMTS13 activity in patients with antiphospholipid antibodies. Blood Coagul Fibrinolysis. 2016;27(8):907-12. doi: 10.1097/MBC.0000000000000512
  58. Afzali B, Noris M, Lambrecht BN, Kemper C. The state of complement in COVID-19. Nat Rev Immunol. 2022;22(2):77-84. doi: 10.1038/s41577-021-00665-1
  59. Zuo Y, Yalavarthi S, Navaz SA, et al. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight. 2021;6(15):e150111. doi: 10.1172/jci.insight.150111
  60. Zuo Y, Yalavarthi S, Gockman K, et al. Anti-Neutrophil Extracellular Trap Antibodies and Impaired Neutrophil Extracellular Trap Degradation in Antiphospholipid Syndrome. Arthritis Rheumatol. 2020;72(12):2130-5. doi: 10.1002/art.41460
  61. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718-24. doi: 10.1126/science.abc6027
  62. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. doi: 10.1126/science.abd4570
  63. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585
  64. Beydon M, Nicaise-Roland P, Mageau A, et al. Autoantibodies against IFNα in patients with systemic lupus erythematosus and susceptibility for infection: a retrospective case-control study. Sci Rep. 2022;12(1):11244. doi: 10.1038/s41598-022-15508-9
  65. Woodruff MC, Ramonell RP, Nguyen DC, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506-16. doi: 10.1038/s41590-020-00814-z
  66. Farris AD, Guthridge JM. Overlapping B cell pathways in severe COVID-19 and lupus. Nat Immunol. 2020;21(12):1478-80. doi: 10.1038/s41590-020-00822-z
  67. Kotzen ES, Roy S, Jain K. Antiphospholipid Syndrome Nephropathy and Other Thrombotic Microangiopathies Among Patients With Systemic Lupus Erythematosus. Adv Chronic Kidney Dis. 2019;26(5):376-86. doi: 10.1053/j.ackd.2019.08.012
  68. Tiwari NR, Phatak S, Sharma VR, Agarwal SK. COVID-19 and thrombotic microangiopathies. Thromb Res. 2021;202:191-8. doi: 10.1016/j.thromres.2021.04.012
  69. Parra Sánchez AR, Voskuyl AE, van Vollenhoven RF. Treat-to-target in systemic lupus erythematosus: Advancing towards its implementation. Nat Rev Rheumatol. 2022;18(3):146-57. doi: 10.1038/s41584-021-00739-3
  70. Fanouriakis A, Kostopoulou M, Alunno A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis. 2019;78(6):736-45. doi: 10.1136/annrheumdis-2019-215089
  71. Соловьев С.К., Асеева Е.А., Попкова Т.В., и др. Системная красная волчанка: новые горизонты диагностики и терапии. Научно-практическая ревматология. 2020;58(1):5-14 [Solovyev SK, Aseeva EA, Popkova TV, et al. Systemic lupus erythematosus: New horizons for diagnosis and therapy. Rheumatology Science and Practice. 2020;58(1):5-14 (in Russian)]. doi: 10.14412/1995-4484-2020-5-14
  72. Насонов Е.Л., Соловьев С.К., Аршинов А.В. Системная красная волчанка: история и современность. Научно-практическая ревматология. 2022;60(4):397-412 [Nasonov EL, Soloviev SK, Arshinov AV. Systemic lupus erythematosus: history and modernity. Rheumatology Science and Practice. 2022;60(4):397-412 (in Russian)]. doi: 10.47360/1995-4484-2022-397-412
  73. Ruiz-Irastorza G, Bertsias G. Treating systemic lupus erythematosus in the 21st century: New drugs and new perspectives on old drugs. Rheumatology (Oxford). 2020;59(Suppl. 5):v69-81. doi: 10.1093/rheumatology/keaa403
  74. Arriens C, Teng YKO, Ginzler EM, et al. Update on the Efficacy and Safety Profile of Voclosporin: An Integrated Analysis of Clinical Trials in Lupus Nephritis. Arthritis Care Res (Hoboken). 2022. doi: 10.1002/acr.25007
  75. Lazar S, Kahlenberg JM. Systemic Lupus Erythematosus: New Diagnostic and Therapeutic Approaches. Annu Rev Med. 2023;74:339-52. doi: 10.1146/annurev-med-043021-032611
  76. Szelinski F, Lino AC, Dörner T. B cells in systemic lupus erythematosus. Curr Opin Rheumatol. 2022;34(2):125-32. doi: 10.1097/BOR.0000000000000865
  77. Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: Advances and mechanistic insights. Nat Rev Drug Discov. 2021;20(3):179-99. doi: 10.1038/s41573-020-00092-2
  78. Насонов Е.Л., Бекетова Т.В., Ананьева Л.П., и др. Перспективы анти-В-клеточной терапии при иммуновоспалительных ревматических заболеваниях. Научно-практическая ревматология. 2019;57:1-40 [Nasonov EL, Beketova TV, Ananyeva LP, et al. Prospects for anti-B-cell therapy in immuno-inflammatory rheumatic diseases. Rheumatology Science and Practice. 2019;57:1-40 (in Russian)]. doi: 10.14412/1995-4484-2019-3-40
  79. Stohl W, Hilbert DM. The discovery and development of belimumab: The anti-BLyS-lupus connection. Nat Biotechnol. 2012;30(1):69-77. doi: 10.1038/nbt.2076
  80. Насонов Е.Л., Решетняк Т.М., Денисов Л.Н., Соловьев С.К. Белимумаб: прогресс в лечении системной красной волчанки. Научно-практическая ревматология. 2012;50(5):13-9 [Nasonov EL, Reshetnyak TM, Denisov LN, Solovyov SK. Belimumab: Advances in drug therapy for systemic lupus erythematosus. Rheumatology Science and Practice. 2012;50(5):13-9 (in Russian)]. doi: 10.14412/1995-4484-2012-1174
  81. Насонов Е.Л., Попкова Т.В., Лила А.М. Белимумаб в лечении системной красной волчанки: 20 лет фундаментальных исследований, 10 лет клинической практики. Научно-практическая ревматология. 2021;59(4):367-83 [Nasonov EL, Popkova TV, Lila AM. Belimumab in the treatment of systemic lupus erythematosus: 20 years of basic research, 10 years of clinical practice. Rheumatology Science and Practice. 2021;59(4):367-83 (in Russian)]. doi: 10.47360/1995-4484-2021-367-383
  82. Hiepe F, Dörner T, Hauser AE, et al. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol. 2011;7(3):170-8. doi: 10.1038/nrrheum.2011.1
  83. Ostendorf L, Burns M, Durek P, et al. Targeting CD38 with daratumumab in refractory systemic lupus erythematosus. N Engl J Med. 2020;383(12):1149-55. doi: 10.1056/NEJMoa2023325
  84. Pleguezuelo DE, Díaz-Simón R, Cabrera-Marante O, et al. Case Report: Resetting the Humoral Immune Response by Targeting Plasma Cells With Daratumumab in Anti-Phospholipid Syndrome. Front Immunol. 2021;12:667515. doi: 10.3389/fimmu.2021.667515
  85. Orvain C, Boulch M, Bousso P, et al. Is there a place for chimeric antigen receptor-T cells in the treatment of chronic autoimmune rheumatic diseases? Arthritis Rheumatol. 2021;73(11):1954-65. doi: 10.1002/art.41812
  86. Mougiakakos D, Krönke G, Völkl S, et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N Engl J Med. 2021;385(6):567-9. doi: 10.1056/NEJMc2107725
  87. Goulden B, Isenberg D. Anti-IFNαR MAbs for the treatment of systemic lupus erythematosus. Expert Opin Biol Ther. 2021;21(4):519-28. doi: 10.1080/14712598.2021.1841164
  88. Насонов Е.Л., Авдеева А.С., Попкова Т.В. Новые возможности фармакотерапии системной красной волчанки: перспективы применения анифролумаба (моноклональные антитела к рецепторам интерферона типа I). Научно-практическая ревматология. 2021;59(5):537-46 [Nasonov EL, Avdeeva AS, Popkova TV. New possibilities of pharmacotherapy for systemic lupus erythematosus: Prospects for the use of anifrolumab (monoclonal antibodies to type I interferon receptor). Rheumatology Science and Practice. 2021;59(5):537-46 (in Russian)]. doi: 10.47360/1995-4484-2021-537-546
  89. Насонов Е.Л., Лила А.М. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16 [Nasonov EL, Lila AM. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: New opportunities and prospects. Rheumatology Science and Practice. 2019;57(1):8-16 (in Russian)]. doi: 10.14412/1995-4484-2019-8-16
  90. Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: A mechanisms-based approach. Nat Rev Rheumatol. 2022;18(3):133-45. doi: 10.1038/s41584-021-00726-8
  91. Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222-31. doi: 10.1016/S0140-6736(18)31363-1
  92. Hasni SA, Gupta S, Davis M, et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat Commun. 2021;12(1):3391. doi: 10.1038/s41467-021-23361-z
  93. Tektonidou MG, Andreoli L, Limper M, et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann Rheum Dis. 2019;78(10):1296-304. doi: 10.1136/annrheumdis-2019-215213
  94. Dima A, Jurcut C, Chasset F, et al. Hydroxychloroquine in systemic lupus erythematosus: overview of current knowledge. Ther Adv Musculoskelet Dis. 2022;14:1759720X211073001. doi: 10.1177/1759720X211073001
  95. Решетняк Т.М., Нурбаева К.С. Прямые оральные антикоагулянты при антифосфолипидном синдроме. Научно-практическая ревматология. 2020;58(6):708-15 [Reshetnyak TM, Nurbaeva KS. Direct-acting oral anticoagulants in antiphospholipid syndrome. Rheumatology Science and Practice. 2020;58(6):708-15 (in Russian)]. doi: 10.47360/1995-4484-2020-708-715
  96. Kello N, Khoury LE, Marder G, et al. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: Case series and review of literature. Semin Arthritis Rheum. 2019;49(1):74-83. doi: 10.1016/j.semarthrit.2018.11.005
  97. Hussain H, Tarantino MD, Chaturvedi S, et al. Eculizumab for refractory thrombosis in antiphospholipid syndrome. Blood Adv. 2022;6(4):1271-7. doi: 10.1182/bloodadvances.2021005657
  98. Ng N, Powell CA. Targeting the Complement Cascade in the Pathophysiology of COVID-19 Disease. J Clin Med. 2021;10(10):2188. doi: 10.3390/jcm10102188
  99. Vitiello A, La Porta R, D'Aiuto V, Ferrara F. Pharmacological approach for the reduction of inflammatory and prothrombotic hyperactive state in COVID-19 positive patients by acting on complement cascade. Hum Immunol. 2021;82(4):264-9. doi: 10.1016/j.humimm.2021.01.007
  100. Tektonidou MG. Cardiovascular disease risk in antiphospholipid syndrome: Thrombo-inflammation and atherothrombosis. J Autoimmun. 2022;128:102813. doi: 10.1016/j.jaut.2022.102813
  101. Serrano M, Espinosa G, Serrano A, Cervera R. COVID-19 and the antiphospholipid syndrome. Autoimmun Rev. 2022;21(12):103206. doi: 10.1016/j.autrev.2022.103206
  102. Cohen H, Isenberg DA. How I treat anticoagulant-refractory thrombotic antiphospholipid syndrome. Blood. 2021;137(3):299-309. doi: 10.1182/blood.2020004942
  103. Tumian NR, Hunt BJ. Clinical Management of Thrombotic Antiphospholipid Syndrome. J Clin Med. 2022;11(3):735. doi: 10.3390/jcm11030735
  104. Erkan D. Expert Perspective: Management of Microvascular and Catastrophic Antiphospholipid Syndrome. Arthritis Rheumatol. 2021;73(10):1780-90. doi: 10.1002/art.41891
  105. Drosos GC, Vedder D, Houben E, et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann Rheum Dis. 2022;81(6):768-79. doi: 10.1136/annrheumdis-2021-221733
  106. Murakami N, Hayden R, Hills T, et al. Therapeutic advances in COVID-19. Nat Rev Nephrol. 2023;19(1):38-52. doi: 10.1038/s41581-022-00642-4.
  107. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28(1):39-50. doi: 10.1038/s41591-021-01643-9.

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies