Peculiarities of hemostasis in patients with COVID-19

Cover Page

Cite item

Full Text

Abstract

Aim. Analysis of the dynamics of different stages of clot formation and its lysis in patients with different COVID-19 severity.

Materials and methods. We prospectively included 58 patients with COVID-19 (39 patients with moderate disease severity and 18 patients with severe disease) and 47 healthy volunteers as a control group. All participants underwent the assessment of flow-mediated dilation (FMD) of brachial artery, impedance aggregometry, rotational thromboelastometry and thrombodynamics. Von Willebrand factor antigen (vWF:Ag) quantification was also performed in patients with COVID-19. Measurements were repeated on the 3rd and 9th day of hospitalization.

Results. Compared to the control group, patients with COVID-19 showed reduced values of platelet aggregation and greater values of the clot growth rate, as well as its size and density. On the first day of hospitalization, we found no differences in the activity of plasma hemostasis and endogenous fibrinolysis between subgroups of patients. With the progression of the disease, the growth rate and size of the clot were higher in the severe subgroup, even despite higher doses of anticoagulants in this subgroup. An increase in platelet aggregation was noted during the progression of the disease, especially in the severe subgroup. There were no differences in the results of the FMD test by subgroups of patients. The vWF:Ag level was significantly higher in the severe subgroup.

Conclusion. Thus, plasma hemostasis followed by secondary platelet activation correlates with the severity of COVID-19. Patients with moderate to severe coronavirus infection have predominantly local rather than generalized endothelial dysfunction.

About the authors

Anna I. Kalinskaya

Davydovsky City Clinical Hospital; Yevdokimov Moscow State University of Medicine and Dentistry

Author for correspondence.
Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0003-2316-4238

канд. мед. наук, зав. отд-нием неотложной кардиологии для больных с острым инфарктом миокарда; доц. каф. кардиологии

Russian Federation, Moscow; Moscow

Oleg A. Dukhin

Davydovsky City Clinical Hospital; Yevdokimov Moscow State University of Medicine and Dentistry

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0003-2278-1154

врач-кардиолог; аспирант

Russian Federation, Moscow; Moscow

Ivan A. Molodtsov

Davydovsky City Clinical Hospital

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0001-8154-9350

медицинский статистик

Russian Federation, Moscow

Aleksandra S. Anisimova

Yevdokimov Moscow State University of Medicine and Dentistry

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0002-1215-132X

врач-ординатор

Russian Federation, Moscow

Denis A. Sokorev

Davydovsky City Clinical Hospital

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0003-4887-2185

врач-кардиолог

Russian Federation, Moscow

Antonina K. Elizarova

Davydovsky City Clinical Hospital; Yevdokimov Moscow State University of Medicine and Dentistry

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0001-8715-8916

врач-кардиолог; аспирант

Russian Federation, Moscow; Moscow

Olga A. Sapozhnikova

Davydovsky City Clinical Hospital

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0002-6520-5926

врач-кардиолог

Russian Federation, Moscow

Kseniya A. Glebova

Davydovsky City Clinical Hospital

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0002-2559-9449

врач-кардиолог

Russian Federation, Moscow

Soslan S. Shakhidzhanov

Center for Theoretical Problems of Physicochemical Pharmacology

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0002-5677-8052

науч. сотр. лаб. биофизики

Russian Federation, Moscow

Ilia S. Spiridonov

Center for Theoretical Problems of Physicochemical Pharmacology

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0001-7514-0559

вед. инженер отдела разработок

Russian Federation, Moscow

Fazly I. Ataullakhanov

Center for Theoretical Problems of Physicochemical Pharmacology; University of Pennsylvania

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0003-3403-181X

канд. физ.-мат. наук, д-р биол. наук, проф., гл. науч. сотр.; приглашенный проф.

Russian Federation, Moscow; Philadelphia, USA

Alexander V. Shpektor

Yevdokimov Moscow State University of Medicine and Dentistry

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0001-6190-6808

чл.-кор. РАН, д-р мед. наук, проф., рук-ль Университетской клиники кардиологии

Russian Federation, Moscow

Elena Yu. Vasilieva

Davydovsky City Clinical Hospital; Yevdokimov Moscow State University of Medicine and Dentistry

Email: kalinskaya.anna@gmail.com
ORCID iD: 0000-0002-6310-7636

д-р мед. наук, проф., глав. врач; рук-ль лаб. атеротромбоза

Russian Federation, Moscow; Moscow

References

  1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7
  2. Jenner WJ, Gorog DA. Incidence of thrombotic complications in COVID-19: On behalf of ICODE: The International COVID-19 Thrombosis Biomarkers Colloquium. J Thromb Thrombolysis. 2021;52(4):999-1006. doi: 10.1007/s11239-021-02475-7
  3. Edler C, Schröder AS, Aepfelbacher M, et al. Dying with SARS-CoV-2 infection – an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int J Legal Med. 2020;134(4):1275-84. doi: 10.1007/s00414-020-02317-w
  4. McGonagle D, Bridgewood C, Ramanan AV, et al. COVID-19 vasculitis and novel vasculitis mimics. Lancet Rheumatol. 2021;3(3):e224-33. doi: 10.1016/S2665-9913(20)30420-3
  5. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-8. doi: 10.1056/NEJMoa2015432
  6. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8. doi: 10.1016/S0140-6736(20)30937-5
  7. O’Sullivan JM, Gonagle DM, Ward SE, et al. Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol. 2020;7(8):e553-5. doi: 10.1016/S2352-3026(20)30215-5
  8. Manne BK, Denorme F, Middleton EA, et al. Platelet Gene Expression and Function in COVID-19 Patients. Blood. 2020;136(11):1317-29. doi: 10.1182/blood.2020007214
  9. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950-73. doi: 10.1016/j.jacc.2020.04.031
  10. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-6. doi: 10.1111/jth.14810
  11. Калинская А.И., Саввинова П.П., Васильева Е.Ю., Шпектор А.В. Особенности тромбообразования и эндогенного фибринолиза у пациентов с острым коронарным синдромом. Российский кардиологический журнал. 2018;(9):12-6 [Kalinskaya AI, Savvinova PP, Vasilieva EYu, Shpektor AV. The specifics of clotting and endogenic fibrinolysis in acute coronary syndrome patients. Russian Journal of Cardiology. 2018;(9): 12-6 (in Russian)]. doi: 10.15829/1560-4071-2018-9-12-16
  12. Dukhin OA, Kalinskaya A, Uzhakhova H, et al. Clot formation and endogenous fibrinolysis in acs patients compared to patients with a history of st elevation myocardial infarction. Atherosclerosis. 2020;315:e233. doi: 10.1016/j.atherosclerosis.2020.10.733
  13. Rodriguez-Miguelez P, Seigler N, Harris RA. Ultrasound assessment of endothelial function: A technical guideline of the flow-mediated dilation test. J Vis Exp. 2016;(110):54011. doi: 10.3791/54011
  14. Paniccia R, Priora R, Liotta AA, Abbate R. Platelet function tests: a comparative review. Vasc Health Risk Manag. 2015;11:133-48. doi: 10.2147/VHRM.S44469
  15. Balandina AN, Serebriyskiy II, Poletaev AV, et al. Thrombodynamics – A new global hemostasis assay for heparin monitoring in patients under the anticoagulant treatment. PLoS One. 2018;13(6):e0199900. doi: 10.1371/journal.pone.0199900
  16. Funderburg NT, Lederman MM. Coagulation and morbidity in treated HIV infection. Thromb Res. 2014;133Suppl. 1(01):S21-4. doi: 10.1016/j.thromres.2014.03.012
  17. Yang J-R, Lo J, Ho Y-L, et al. Pandemic H1N1 and seasonal H3N2 influenza infection in the human population show different distributions of viral loads, which substantially affect the performance of rapid influenza tests. Virus Res. 2011;155(1):163-7. doi: 10.1016/j.virusres.2010.09.015
  18. Wang CC, Chang CT, Lin CL, et al. Hepatitis C virus infection associated with an increased risk of deep vein thrombosis: A population-based cohort study. Medicine (Baltimore). 2015;94(38):e1585. doi: 10.1097/MD.0000000000001585
  19. Geisbert TW, Young HA, Jahrling PB, et al. Pathogenesis of Ebola Hemorrhagic Fever in Primate Models: Evidence that Hemorrhage Is Not a Direct Effect of Virus-Induced Cytolysis of Endothelial Cells. Am J Pathol. 2003;163(6):2371-82. doi: 10.1016/S0002-9440(10)63592-4
  20. Squizzato A, Gerdes VEA, Büller HR. Effects of human cytomegalovirus infection on the coagulation system. Thromb Haemost. 2005;93(3):403-10. doi: 10.1160/TH04-08-0523
  21. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397(10285):1637-45. doi: 10.1016/S0140-6736(21)00676-0
  22. Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738-42. doi: 10.1111/jth.14850
  23. Carsana L, Sonzogni A, Nasr A, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020;20(10):1135-40. doi: 10.1016/S1473-3099(20)30434-5
  24. Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46(6):1099-102. doi: 10.1007/s00134-020-06033-2
  25. Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389-91. doi: 10.1038/s41577-020-0343-0. Erratum in: Nat Rev Immunol. 2020.
  26. Goshua G, Pine AB, Meizlish ML, et al. Articles Endotheliopathy in COVID-19-associated coagulopathy : evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575-82. doi: 10.1016/S2352-3026(20)30216-7
  27. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-8. doi: 10.1056/NEJMoa2015432
  28. Mancini I, Baronciani L, Artoni A, et al. The ADAMTS13-von Willebrand factor axis in COVID-19 patients. J Thromb Haemost. 2021;19(2):513-21. doi: 10.1111/jth.15191
  29. Evans PC, Rainger GE, Mason JC, et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020;116(14):2177-84. doi: 10.1093/cvr/cvaa230
  30. Ward SE, Curley GF, Lavin M, et al. Von Willebrand factor propeptide in severe coronavirus disease 2019 (COVID-19): evidence of acute and sustained endothelial cell activation. Br J Haematol. 2021;192(4):714-9. doi: 10.1111/bjh.17273
  31. Shechter M, Shechter A, Koren-Morag N, et al. Usefulness of brachial artery flow-mediated dilation to predict long-term cardiovascular events in subjects without heart disease. Am J Cardiol. 2014;113(1):162-7. doi: 10.1016/j.amjcard.2013.08.051
  32. Vasilieva E, Vorobyeva I, Lebedeva A, et al. Brachial Artery Flow-mediated Dilation in Patients with Tako-Tsubo Cardiomyopathy. Am J Med. 2011;124(12):1176-9. doi: 10.1016/j.amjmed.2011.05.033
  33. Maruhashi T, Kajikawa M, Kishimoto S, et al. Diagnostic Criteria of Flow-Mediated Vasodilation for Normal Endothelial Function and Nitroglycerin-Induced Vasodilation for Normal Vascular Smooth Muscle Function of the Brachial Artery. J Am Heart Assoc. 2020;9(2):e013915. doi: 10.1161/JAHA.119.013915
  34. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7(10):803-15. doi: 10.1038/nri2171
  35. Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089-98. doi: 10.1007/s00134-020-06062-x
  36. Ladikou EE, Sivaloganathan H, Milne KM, et al. Von Willebrand factor (vWF): Marker of endothelial damage and thrombotic risk in COVID-19? Clin Med (Lond). 2020;20(5):e178-82. doi: 10.7861/clinmed.2020-0346
  37. Philippe A, Chocron R, Gendron N, et al. Circulating Von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis. 2021;24(3):505-17. doi: 10.1007/s10456-020-09762-6
  38. Hottz ED, Azevedo-Quintanilha IG, Palhinha L, et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020;136(11):1330-41. doi: 10.1182/blood.2020007252
  39. Abdi M, Hosseini Z, Shirjan F, et al. Effect of Aspirin on the prevention of pro-thrombotic states in hospitalized COVID-19 patients: Systematic review. Cardiovasc Hematol Agents Med Chem. 2022. doi: 10.2174/1871525720666220401102728
  40. Zareef R, Diab M, Al Saleh T, et al. Aspirin in COVID-19: Pros and Cons. Front Pharmacol. 2022;13:849628. doi: 10.3389/fphar.2022.849628
  41. RECOVERY Collaborative Group. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2022;399(10320):143-51. doi: 10.1016/S0140-6736(21)01825-0
  42. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. doi: 10.1111/jth.14768
  43. Lippi G, Favaloro EJ. D-dimer is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. Thromb Haemost. 2020;120(5):876-8. doi: 10.1055/s-0040-1709650

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The results of the test for endothelium-dependent vasodilation at the 1st, 2nd and 3rd points.

Download (82KB)
3. Fig. 2. The results of the study of impedance aggregometry at the 1st, 2nd and 3rd points.

Download (153KB)
4. Fig. 3. The results of the study of rotational thromboelastometry at time points 1, 2 and 3.

Download (131KB)
5. Fig. 4. The results of the thrombodynamic study at time points 1, 2 and 3.

Download (126KB)

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies