Management of iron deficiency in chronic heart failure

Cover Page

Cite item

Full Text

Abstract

Iron deficiency is frequent in patients with chronic heart failure (CHF) with a prevalence of 50%, and its frequency varies depending on the study groups. The presence of iron deficiency limits erythropoiesis, leading to the development of anemia over time in patients with CHF, regardless of gender, race, and left ventricular ejection fraction (LVEF). Observational studies demonstrate a higher prevalence of iron deficiency in women and in patients with higher NYHA (New York Heart Association) functional class, decreased LVEF, increased brain natriuretic peptide (NT-proBNP), or increased high-sensitivity C-reactive protein. Iron deficiency and anemia in patients with CHF are independently associated with a decreased exercise capacity, hospitalizations for CHF, an increase in overall mortality and mortality from cardiovascular diseases. The clinical significance of iron deficiency requires the need to diagnose iron metabolism in all patients with CHF. Current guidelines for the diagnosis and treatment of CHF indicate the need to determine the level of ferritin and saturation of transferrin in all patients with a suspected diagnosis of heart failure. The use of oral iron therapy in patients with CHF demonstrates its low efficacy in correcting this condition according to the clinical trials. At the same time the use of intravenous iron therapy is safe and improves symptoms, exercise capacity and quality of life in patients with heart failure with reduced ejection fraction and iron deficiency, which has been shown both in international placebo-controlled trials and meta-analyses. The use of iron carboxymaltose should improve CHF symptoms, exercise capacity and quality of life in patients with CHF and LVEF<45%. Intravenous iron therapy has also been shown to reduce readmissions for CHF in patients with an LVEF<50% who have recently been hospitalized for worsening CHF.

About the authors

Tatiana M. Uskach

Chazov National Medical Research Center of Cardiology; Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: tuskach@mail.ru
ORCID iD: 0000-0003-4318-0315

д-р мед. наук, вед. науч. сотр. отд. заболеваний миокарда и сердечной недостаточности, проф. каф. кардиологии

Russian Federation, Moscow; Moscow

References

  1. Kurz K, Lanser L, Seifert M, et al. Anaemia, iron status, and gender predict the outcome in patients with chronic heart failure. ESC Heart Fail. 2020;7:1880-90. doi: 10.1002/ehf2.12755
  2. Pasricha SR, Flecknoe-Brown SC, Allen KJ, et al. Diagnosis and management of iron deficiency anaemia: a clinical update. Med J Aust. 2010;193(9):525-32. doi: 10.5694/j.1326-5377.2010.tb04038.x
  3. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. The Journal of Nutrition. 2001;131(2S-2):568S-80S. doi: 10.1093/jn/131.2.568S
  4. Fairbanks V. Iron deficiency. In: Beutler E. Williams hematology. Eds V Fairbanks, E Beutler. 6th ed. New York: McGraw-Hill, 2001; p. 295-470.
  5. Clark SF. Iron deficiency anemia: diagnosis and management. Curr Opin Gastroenterol. 2009;25:122-8.
  6. Zimmermann MB. Hurrell RF. Nutritional Iron Deficiency. Lancet. 2007;370:511-20. doi: 10.1016/S0140-6736(07)61235-5
  7. Anand IS, Gupta P. Anemia and iron deficiency in heart failure: current concepts and emerging therapies. Circulation. 2018;138:80-98. doi: 10.1161/CIRCULATIONAHA.118.030099
  8. von Haehling S, Gremmler U, Krumm M, et al. Prevalence and clinical impact of iron deficiency and anaemia among outpatients with chronic heart failure: the PrEP Registry. Clin Res Cardiol. 2017;106(6):436-43. doi: 10.1007/s00392-016-1073-y
  9. Jacob C, Altevers J, Barck I, et al. Retrospective analysis into differences in heart failure patients with and without iron deficiency or anaemia. ESC Heart Fail. 2019;6(4):840-55. doi: 10.1002/ehf2.12485
  10. Baker JF, Ghio AJ. Iron homoeostasis in rheumatic disease Rheumatology. 2009;48(11):1339-44. doi: 10.1093/rheumatology/kep221
  11. Gomollón F, Gisbert JP. Anemia and inflammatory bowel diseases. World J Gastroenterol. 2009;15(37):4659-65. doi: 10.3748/wjg.15.4659
  12. Weiss G. Iron metabolism in the anemia of chronic disease. Biochim Biophys Acta. 2009;1790(7):682-93. doi: 10.1016/j.bbagen.2008.08.006
  13. Klip IT, Comin-Colet J, Voors AA. Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J. 2013;165:575-82. doi: 10.1016/j.ahj.2013.01.017
  14. Paterek A, Mackiewicz U, Mączewski M. Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormalities. J Cell Physiol. 2019;234(12):21613-29. doi: 10.1002/jcp.28820
  15. Muñoz M, Villar I, García-Erce JA. An update on iron physiology. World J Gastroenterol. 2009;15(37):4617-26. doi: 10.3748/wjg.15.4617
  16. Handelman GJ. Levin NW. Iron and anemia in human biology: a review of mechanisms. Heart Fail Rev. 2008;13(4):393-404. doi: 10.1007/s10741-008-9086-x
  17. Westenbrink BD, Visser FW, Voors AA, et al. Anaemia in chronic heart failure is not only related to impaired renal perfusion and blunted erythropoietin production, but to fluid retention as well. Eur Heart J. 2007;28(2):166-71. doi: 10.1093/eurheartj/ehl419
  18. Kemna EH, Tjalsma H, Willems HL, et al. Hepcidin: from discovery to differential diagnosis. Haematologica. 2008;93(1):90-7. doi: 10.3324/haematol.11705
  19. Viatte L, Vaulont S. Hepcidin, the iron watcher. Biochimie. 2009;91(10):1223-8. doi: 10.1016/j.biochi.2009.06.012
  20. Camaschella C. Iron deficiency. Blood. 2019;133:30-9. doi: 10.1182/blood-2018-05-815944
  21. Anderson GJ, Vulpe GD. Mammalian iron transport. Cell Mol Life Sci. 2009;66(20):3241-61. doi: 10.1007/s00018-009-0051-1
  22. Cairo G, Bernuzzi F, Recalcati S. A precious metal: iron, an essential nutrient for all cells. Genes Nutr. 2006;1(1):25-39. doi: 10.1007/BF02829934
  23. Iorio A, Senni M, Barbati G, et al. Prevalence and prognostic impact of non-cardiac co-morbidities in heart failure outpatients with preserved and reduced ejection fraction: a community-based study. Eur J Heart Fail. 2018;20:1257-66. doi: 10.1002/ejhf.1202
  24. Hinton PS, Sinclair LM. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Eur J Clin Nutr. 2007;61(1):30-9. doi: 10.1038/sj.ejcn.1602479
  25. Anker SD, Comin Colet J, Filippatos G, et al. FAIR-HF Trial Investigators. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361:2436-48. doi: 10.1056/NEJMoa0908355
  26. Cleland JG, Zhang J, Pellicori P, et al. Prevalence and outcomes of anemia and hematinic deficiencies in patients with chronic heart failure. JAMA Cardiol. 2016;1:539-47. doi: 10.1001/jamacardio.2016.1161
  27. Jankowska EA, Rozentryt P, Witkowska A, et al. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J. 2010;31:1872-80. doi: 10.1093/eurheartj/ehq158
  28. Makubi A, Hage C, Lwakatare J, et al. Prevalence and prognostic implications of anaemia and iron deficiency in Tanzanian patients with heart failure. Heart. 2015;101:592-9. doi: 10.1136/heartjnl-2014-306890
  29. Yeo TJ, Yeo PS, Ching-Chiew Wong R, et al. Iron deficiency in a multi- ethnic Asian population with and without heart failure: prevalence, clinical correlates, functional significance and prognosis. Eur J Heart Fail. 2014;16:1125-32. doi: 10.1002/ejhf.161
  30. Martens P, Nijst P, Verbrugge FH, et al. Impact of iron deficiency on exercise capacity and outcome in heart failure with reduced, mid-range and preserved ejection fraction. Acta Cardiol. 2018;73(2):115-23. doi: 10.1080/00015385.2017.1351239
  31. Cohen-Solal A, Damy T, Terbah M, et al. High prevalence of iron deficiency in patients with acute decompensated heart failure. Eur J Heart Fail. 2014;16(9):984-91. doi: 10.1002/ejhf.139
  32. Allain F, Loizeau V, Chaufourier L, et al. Usefulness of a personalized algorithm-based discharge checklist in patients hospitalized for acute heart failure. ESC Heart Fail. 2020;7(3):1217-23. doi: 10.1002/ehf2.12604
  33. World Health Organization (WHO). Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva: World Health Organization, 2011. Available at: http://www.who.int/vmnis/indicators/haemoglobin.pdf. Accessed: 15.02.2022.
  34. Lynch S. Indicators of the iron status of populations: red blood cell parameters. Assessing the Iron Status of Populations: Including Literature Reviews: Report of a Joint World Health Organization/Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level. Geneva Switzerland; 2004; Apr:6–8. Geneva (Switzerland): WHO, 2007.
  35. Fletcher A, Forbes A, Svenson N, Thomas DW. Guideline for the laboratory diagnosis of iron deficiency in adults (excluding pregnancy) and children. Br J Haematol. 2022;196(3):523-9. doi: 10.1111/bjh.17900
  36. Beverborg NG, Klip IT, Meijers WC, et al. Definition of iron deficiency based on the gold standard of bone marrow iron staining in heart failure patients. Circ Heart Fail. 2018;11(2):e004519. doi: 10.1161/CIRCHEARTFAILURE.117.004519
  37. Loncar G, Obradovic D, Thiele H, et al. Iron deficiency in heart failure. ESC Heart Fail. 2021;8(4):2368-79. doi: 10.1002/ehf2.13265
  38. Walters GO, Miller FM, Worwood M. Serum ferritin concentration and iron stores in normal subjects. J Clin Pathol. 1973;26:770-2. doi: 10.1136/jcp.26.10.770
  39. Guyatt GH, Oxman AD, Ali M, et al. Laboratory diagnosis of iron-deficiency anemia. J Gen Intern Med. 1992;7:145-53. doi: 10.1007/BF02598003
  40. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure Eur Heart J. 2021;42(36):3599-726. doi: 10.1093/eurheartj/ehab368
  41. Beck-da-Silva L, Piardi D, Soderet S, et al. IRON-HF study: a randomized trial to assess the effects of iron in heart failure patients with anemia. Int J Cardiol. 2013;168:3439-42. doi: 10.1016/j.ijcard.2013.04.181
  42. Lewis GD, Malhotra R, Hernandez AF, et al. Effect of Oral Iron Repletion on Exercise Capacity in Patients With Heart Failure With Reduced Ejection Fraction and Iron Deficiency: The IRONOUT HF Randomized Clinical Trial. JAMA. 2017;317(19):1958-66. doi: 10.1001/jama.2017.5427
  43. Niehaus ED, Malhotra R, Cocca-Spofford D, et al. Repletion of iron stores with the use of oral iron supplementation in patients with systolic heart failure. J Card Fail. 2015;21(8):694-7. doi: 10.1016/j.cardfail.2015.05.006
  44. Lewis GD, Semigran MJ, Givertz MM, et al. Oral iron therapy for heart failure with reduced ejection fraction:design and rationale for oral iron repletion effects on oxygen uptake in heart failure. Circ Heart Fail. 2016;9(5):e000345. doi: 10.1161/CIRCHEARTFAILURE.115.000345
  45. von Haehling S, Ebner N, Evertz R, et al. Iron deficiency in heart failure: an overview. JACC Heart Fail. 2019;7:36-46. doi: 10.1016/j.jchf.2018.07.015
  46. Crichton RR, Danielson BG, Geisser P, et al. Iron therapy with special empasis on intravenous administration. 3nd ed. Bremen: UNI-Med, 2006; p. 96.
  47. Comin-Colet J, Lainscak M, Dickstein K, et al. The effect of intravenous ferric carboxymaltose on health-related quality of life in patients with chronic heart failure and iron deficiency: a subanalysis of the FAIR-HF study. Eur Heart J. 2013;34:30-8. doi: 10.1093/eurheartj/ehr504
  48. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, et al. CONFIRM- HF Investigators. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J. 2015;36:657-68. doi: 10.1093/eurheartj/ehu385
  49. van Veldhuisen DJ, Ponikowski P, van der Meer P, et al; EFFECT-HF Investigators. Effect of ferric carboxymaltose on exercise capacity in patients with chronic heart failure and iron deficiency. Circulation. 2017;136:1374-83. doi: 10.1161/CIRCULATIONAHA.117.027497
  50. Jankowska EA, Tkaczyszyn M, Suchocki T, et al. Effects of intravenous iron therapy in iron-deficient patients with systolic heart failure: a meta-analysis of randomized controlled trials. Eur J Heart Fail. 2016;18:786-95. doi: 10.1002/ejhf.473
  51. Okonko DO, Grzeslo A, Witkowski T. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial. J Am Coll Cardiol. 2008;51(2):103-12. doi: 10.1016/j.jacc.2007.09.036
  52. Filippatos G, Farmakis D, Colet JC, et al. Intravenous ferric carboxymaltose in iron-deficient chronic heart failure patients with and without anaemia: a subanalysis of the FAIR-HF trial. Eur J Heart Fail. 2013;15:1267-76. doi: 10.1093/eurjhf/hft099
  53. Ponikowski P, Kirwan BA, Anker SD, et al. AFFIRM-AHF Investigators. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet. 2020;396:1895-904. doi: 10.1016/s0140-6736(20)32339-4
  54. Anker SD, Kirwan BA, van Veldhuisen DJ, et al. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: an individual patient data meta-analysis. Eur J Heart Fail. 2018;20:125-33. doi: 10.1002/ejhf.823
  55. Khan MS, Usman MS, von Haehling S, et al. Ferric carboxymaltose for the treatment of iron-deficient heart failure patients: a systematic review and meta-analysis. ESC Heart Failure. 2020;7(6):3392-400. doi: 10.1002/ehf2.13146

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies