Detection of paraprotein in plasma cell tumors

Cover Page

Cite item

Full Text

Abstract

Paraprotein is a laboratory biomarker of plasma cell tumors and other lymphoproliferative diseases. Its determination is necessary for diagnosing, monitoring and assessment of therapy effectiveness. The lecture presents the main methods of qualitative and quantative analysis of monoclonal proteins: gel electrophoresis, capillary electrophoresis, immunofixation and nephelometry features, possibilities and limitations are reviewed. The main sources of errors and artifacts during these studies are considered. Also the difficulties in the diagnosis and interpretation of the results of serum and urine tests are highlighted.

About the authors

Irina G. Rekhtina

National Medical Research Center for Hematology

Author for correspondence.
Email: rekhtina.i@blood.ru
ORCID iD: 0000-0001-5440-4340

д-р мед. наук, зав. отд-нием химиотерапии плазмоклеточных дискразий

Russian Federation, Moscow

Larisa P. Mendeleeva

National Medical Research Center for Hematology

Email: rekhtina.i@blood.ru
ORCID iD: 0000-0002-4966-8146

д-р мед. наук, проф., рук. управления по научной и образовательной работе, зав. отд. химиотерапии парапротеинемических гемобластозов

Russian Federation, Moscow

Natalia P. Soboleva

National Medical Research Center for Hematology

Email: rekhtina.i@blood.ru
ORCID iD: 0000-0002-1903-2446

врач клинической лабораторной диагностики централизованной клинико-диагностической лаб.

Russian Federation, Moscow

Irina A. Dubina

Pavlov First Saint Petersburg State Medical University

Email: rekhtina.i@blood.ru
ORCID iD: 0000-0001-5256-7066

врач клинической лабораторной диагностики

Russian Federation, Saint Petersburg

Margarita Iu. Pervakova

Pavlov First Saint Petersburg State Medical University

Email: rekhtina.i@blood.ru
ORCID iD: 0000-0001-9630-257X

врач клинической лабораторной диагностики

Russian Federation, Saint Petersburg

Sergey V. Lapin

Pavlov First Saint Petersburg State Medical University

Email: rekhtina.i@blood.ru
ORCID iD: 0000-0002-4998-3699

канд. мед. наук, зав. лаб. диагностики аутоиммунных заболеваний

Russian Federation, Saint Petersburg

References

  1. WHO classification of tumours oh haematopoetic and lymphoid tissues. Ed. by Swerdlov SH, Campo E, Harris NL, et al. Revised 4th ed.
  2. Bradwell AR. Serum free light chain analysis plus hevylite. 7th ed. UK (Birmingham): The Binding Site Group, 2015.
  3. Katzmann JA. Screening panels for monoclonal gammopathies: time to change. Clin Biochem Rev. 2009;30:105-11.
  4. García-García P, Enciso-Alvarez K, Diaz-Espada F, et al. Biclonal gammopathies: Retrospective study of 47 patients. Rev Clin Esp. 2015;215(1):18-24. doi: 10.1016/j.rce.2014.07.003
  5. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group Consensus Criteria for Response and Minimal Residual Disease Assessment in Multiple Myeloma. Lancet Oncol. 2016;17(8):e328-46. doi: 10.1016/S1470-2045(16)30206-6
  6. Palladini G, Dispenzieri A, Gertz MA, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30(36):4541-9. doi: 10.1200/JCO.2011.37.7614
  7. Keren DF, Alexanian R, Goeken JA, et al. Guidelines for clinical and laboratory evaluation patients with monoclonal gammopathies. Arch Pathol Lab Med. 1999;123(2):106-7. doi: 10.5858/1999-123-0106-GFCALE
  8. Tate J, Caldwell G, Daly J, et al. Recommendations for standardized reporting of protein electrophoresis in Australia and New Zealand. Ann Clin Biochem. 2012;49:242-56. doi: 10.1258/acb.2011.011158
  9. Keren DF, Schroeder L. Challenges of measuring monoclonal proteins in serum. Clin Chem Lab Med. 2016;54(6):947-61. doi: 10.1515/cclm-2015-0862
  10. Keren D. Protein Electrophoresis in Clinical Diagnosis. London, 2003.
  11. Sørrig R, Klausen TW, Salomo M, et al. Immunoparesis in newly diagnosed Multiple Myeloma patients: Effects on overall survival and progression free survival in the Danish population. PLoS One. 2017;12(12):e0188988. doi: 10.1371/journal.pone.0188988
  12. Fujisawa M, Seike K, Fukumoto K, et al. Oligoclonal bands in patients with multiple myeloma: Its emergence per se could not be translated to improved survival. Cancer Sci. 2014;105(11):1442-6. doi: 10.1111/cas.12527
  13. Willrich MA, Katzmann JA. Laboratory testing requirements for diagnosis and follow-up of multiple myeloma and related plasma cell dyscrasias. Clin Chem Lab Med. 2016;54(6):907-19. doi: 10.1515/cclm-2015-0580
  14. Murray DL, Ryu E, Snyder MR, Katzmann JA. Quantitation of serum monoclonal proteins: relationship between agarose gel electrophoresis and immunonephelometry. Clin Chem. 2009;55(8):1523-9. doi: 10.1373/clinchem.2009.124461
  15. Bergón E, Miravalles E. Estimation of serum M-protein concentration from polyclonal immunoglobulins: an alternative to serum protein electrophoresis and standard immunochemical procedures. Clin Chem Lab Med. 2008;46(8):1156-62. doi: 10.1515/CCLM.2008.232
  16. Ramakrishnan N, Jialal I. Bence-Jones Protein. StatPearls: Treasure Island (FL), 2019.
  17. Csako G. Immunofixation Electrophoresis for Identification of Proteins and Specific Antibodies. In: Methods in molecular biology (Clifton, NJ). United States, 2019; p. 177-201.
  18. Booth RA, McCudden CR, Balion CM, et al. Candidate recommendations for protein electrophoresis reporting from the Canadian Society of Clinical Chemists Monoclonal Gammopathy Working Group. Clin Biochem. 2018;51:10-20. doi: 10.1016/j.clinbiochem.2017.10.013
  19. Waldmann TA, Strober W, Mogielnicki RP. The renal handling of low molecular weight proteins. II. Disorders of serum protein catabolism in patients with tubular proteinuria, the nephrotic syndrome, or uremia. J Clin Invest. 1972;51:2162-74. doi: 10.1172/JCI107023
  20. Solomon A. Light chains of human immunoglobulins. Meth Enzymol. 1985;116:1-121. doi: 10.1016/S0076-6879(85)16008-8
  21. Katzmann JA, Clark RJ, Abraham RS, et al. Serum reference intervals and diagnostic ranges for free k and free l immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin Chem. 2002;4(9):1437-44.
  22. Drayson M, Begum G, Basu S, et al. Effects of paraprotein heavy and light chain types and free light chain load on survival in myeloma: an analysis of patients receiving conventional-dose chemotherapy in Medical Research Council UK multiple myeloma trials. Blood. 2006;108(6):2013-9. doi: 10.1182/blood-2006-03-008953
  23. Bradwell AR, Carr-Smith HD, Mead GP, et al. Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem. 2001;47:673-80.
  24. Dispenzieri A, Kyle R, Merlini G, et al; International myeloma working group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia. 2009;23:215-24. doi: 10.1038/leu.2008.307
  25. Schild C, Wermuth B, Trapp-Chiappini D, et al. Reliability of M protein quantification: comparison of two peak integration methods on Capillarys 2. Clin Chem Lab Med. 2008;46(6):876-7. doi: 10.1515/CCLM.2008.146
  26. Kumar SK, Dispenzieri A, Lacy MQ, et al. Changes in serum-free light chain rather than intact monoclonal immunoglobulin levels predicts outcome following therapy in primary amyloidosis. Am J Hematol. 2011;86(3):251-5. doi: 10.1002/ajh.21948
  27. Comenzo RL, Reece D, Palladini G, et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia. 2012;26(11):2317-25. doi: 10.1038/leu.2012.100
  28. Manwani R, Cohen O, Sharpley F, et al. A prospective observational study of 915 patients with systemic AL amyloidosis treated with upfront bortezomib. Blood. 2019;134(25):2271-80. doi: 10.1182/blood.2019000834
  29. Katzmann JA, Snyder MR, Rajkumar SV, et al. Long-term biological variation of serum protein electrophoresis M-spike, urine M-spike, and monoclonal serum free light chain quantification: implications for monitoring monoclonal gammopathies. Clin Chem. 2011;57:1687-92. doi: 10.1373/clinchem.2011.171314
  30. Kühnemund A, Liebisch P, Bauchmüller K, et al. Light-chain escape-multiple myeloma'- an escape phenomenon from plateau phase: report of the largest patient series using LC-monitoring. J Cancer Res Clin Oncol. 2009;135(3):477-84. doi: 10.1007/s00432-008-0470-7
  31. Hutchison CA, Harding S, Hewins P, et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;3:1684-90. doi: 10.2215/CJN.02290508
  32. Рехтина И.Г., Менделеева Л.П., Соболева Н.П. Трудности в оценке гематологического ответа у больных множественной миеломой с диализзависимой почечной недостаточностью. Терапевтический архив. 2019;91(7):70-4 [Rekhtina IG, Mendeleeva LP, Soboleva NP. Difficulties evaluating hematological response in patients with multiple myeloma and dialysis-dependent renal impairment. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(7):70-4 (in Russian)]. doi: 10.26442/00403660.2019.07.000215
  33. Dimopoulos M, Sonneveld P, Leung N, et al. International Myeloma Working Group recommendations for the diagnosis and management of myeloma-related renal impairment. J Clin Oncol. 2016;34:1544-57. doi: 10.1200/JCO.2015.65.0044
  34. Marron ТU, Ramanathan L, Chari A. Diagnostic utility of measuring free light chains in the cerebrospinal fluid of patients with multiple myeloma. Clin Lymphoma Myeloma Leuk. 2015;15(6):e127-31. doi: 10.1016/j.clml.2015.02.028

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Serum electrophoresis densitograms with normal polyclonal immune response (a), monoclonal Ig synthesis without immunoparesis (b) and with immunoparesis (c).

Download (36KB)
3. Fig. 2. An example of immunofixation of blood serum: a – polyvalent synthesis of all types of chains; b – monovalent synthesis of γ- and κ-chains.

Download (36KB)
4. Fig. 3. Sorption of the paraprotein on the gel: a – identification of the paraprotein composition is impossible, precipitation bands are observed with all antisera; b – thanks to the preliminary treatment of blood serum with 2-mercaptoethanol, the composition of the IgM/κ paraprotein was determined.

Download (74KB)
5. Fig. 4. Artifact during immunofixation of blood serum: a – identification of the light chain is difficult, since with the dilution of the sample used (1:5), the center of the κ-precipitate is washed out, which is due to an excess of antigen; b – a stronger dilution of the sample (1:10) allows eliminating the artifact and identifying the light chain.

Download (81KB)
6. Fig. 5. The presence of several M-peaks on the densitogram: a – biclonal gammopathy: 2 monoclonal peaks were detected (left), immunofixation (right) showed that they have a different composition; b – intraclonal heterogeneity: 2 monoclonal peaks were detected (left), immunofixation (right) showed that they are represented by whole Ig and free light chains.

Download (116KB)
7. Рис. 6. Пример денситограммы (а) сыворотки крови больного нефротическим синдромом с расчетом количественного содержания отдельных фракций и указанием наблюдаемых изменений (b).

Download (75KB)
8. Fig. 7. An example of urine immunofixation. The sample revealed Bence-Jones protein represented by light chains λ.

Download (88KB)
9. Fig. 8. The dependence of the concentration of the monoclonal component on the method of its isolation on the densitometric curve: a – the amount of paraprotein measured by the "full" peak method is 42.92 g/l; b – when using the "truncated" peak method, the concentration is 30.92 g/l.

Download (66KB)
10. Fig. 9. An example of a diagnostic conclusion of paraproteinemia by electrophoresis and immunofixation.

Download (181KB)

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies