Ultrasound Assistant Deep-Eutectic-Solvent-Based Liquid–Liquid Microextraction for the Determination of Transesterification Catalyst in Biodiesel Samples

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hydroxides of alkali and alkaline earth metals are most widely used as catalysts for transesterification of triglycerides of fatty acids in biodiesel production. After biodiesel purification, the determination of catalyst residue is performed to prevent their excess accumulation. Catalysts can promote the degradation of biodiesel. In this research, a simple, fast, and environmentally friendly strategy for the sensitive determination of transesterification catalysts (sodium, potassium, calcium, and magnesium) in biodiesel samples by flame atomization atomic absorption spectrometry is developed. The developed procedure is based on ultrasound assistant dispersive liquid–liquid microextraction of the catalysts in a hydrophilic deep eutectic solvent prepared by mixing quaternary ammonium salt and carboxylic acid. The effect of the nature of the deep eutectic solvent on the mass transfer of catalysts is investigated; in addition, the microextraction procedure conditions are optimized to obtain high sensitivity. The limits of detection established for the proposed procedure are 0.03 mg kg–1 for all analytes. No hazardous and volatile organic solvents are required for sample pretreatment. Sample preparation time is less 15 min.

About the authors

A. Yu. Shishov

Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg University, St. Petersburg State University, SPbSU, SPbU

Email: andrey.shishov.rus@gmail.com
199034, St. Petersburg, Russia

U. O. Markova

Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg University, St. Petersburg State University, SPbSU, SPbU

Email: andrey.shishov.rus@gmail.com
199034, St. Petersburg, Russia

E. R. Nizov

Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg University, St. Petersburg State University, SPbSU, SPbU

Email: andrey.shishov.rus@gmail.com
199034, St. Petersburg, Russia

M. A. Melesova

Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg University, St. Petersburg State University, SPbSU, SPbU

Email: andrey.shishov.rus@gmail.com
199034, St. Petersburg, Russia

D. A. Meshcheva

Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg University, St. Petersburg State University, SPbSU, SPbU

Email: andrey.shishov.rus@gmail.com
199034, St. Petersburg, Russia

F. M. Krekhova

Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg University, St. Petersburg State University, SPbSU, SPbU

Email: andrey.shishov.rus@gmail.com
199034, St. Petersburg, Russia

A. V. Bulatov

Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg University, St. Petersburg State University, SPbSU, SPbU

Author for correspondence.
Email: andrey.shishov.rus@gmail.com
199034, St. Petersburg, Russia

References

  1. Singh D., Sharma D., Soni S.L., Sharma S., Kumar Sharma P., Jhalani A. A Review on Feedstocks, Production Processes, and Yield for Different Generations of Biodiesel // Fuel 2020. V. 262 (July 2019). 116553. https://doi.org/10.1016/j.fuel.2019.116553
  2. Van Gerpen J. Biodiesel Processing and Production // Fuel Process. Technol. 2005. V. 86 (10). P. 1097. https://doi.org/10.1016/j.fuproc.2004.11.005
  3. Knothe G., Razon L.F., Biodiesel Fuels // Prog. Energy Combust. Sci. 2017. V. 58. P. 36. https://doi.org/10.1016/j.pecs.2016.08.001
  4. Chiriac R., Apostolescu N. Emissions of a Diesel Engine Using B20 and Effects of Hydrogen Addition // Int. J. Hydrogen Energy 2013. V. 38 (30). P. 13453. https://doi.org/10.1016/j.ijhydene.2013.07.095
  5. Fabiano B., Reverberi A.P., Del Borghi A., Dovi V.G. Biodiesel Production via Transesterification: Process Safety Insights from Kinetic Modeling // Theor. Found. Chem. Eng. 2012. V. 46(6). P. 673. https://doi.org/10.1134/S0040579512060097
  6. Kirillov V.A., Shigarov A. B. Biofuels as a Promising Source of Hydrogen for Fuel Cell Power Plants // Theor. Found. Chem. Eng. 2016. V. 50(4). P. 351. https://doi.org/10.1134/S0040579516040369
  7. Semwal S., Arora A.K., Badoni R.P., Tuli D.K. Biodiesel Production Using Heterogeneous Catalysts // Bioresour. Technol. 2011. V. 102(3). P. 2151. https://doi.org/10.1016/j.biortech.2010.10.080
  8. Song X.L., Fu X.B., Zhang C.W., Huang W.Y., Zhu Y., Yang J., Zhang Y.M. Preparation of a Novel Carbon Based Solid Acid Catalyst for Biodiesel Production via a Sustainable Route // Catal. Letters 2012. V. 142(7). P. 869. https://doi.org/10.1007/s10562-012-0840-2
  9. Ranganathan S.V., Narasimhan S.L., Muthukumar K. An Overview of Enzymatic Production of Biodiesel // Bioresour. Technol. 2008. V. 99(10). P. 3975. https://doi.org/10.1016/j.biortech.2007.04.060
  10. Shaah M.A., Hossain M.S., Allafi F., Ab Kadir M.O., Ahmad M.I. Biodiesel Production from Candlenut Oil Using a Non-Catalytic Supercritical Methanol Transesterification Process: Optimization // Kinetics, and Thermodynamic Studies, RSC Adv. 2022. V. 12(16). P. 9845. https://doi.org/10.1039/d2ra00571a
  11. Jamil F., Murphin Kumar P.S., Al-Haj L., Tay Zar Myint M., Al-Muhtaseb A.H. Heterogeneous Carbon-Based Catalyst Modified by Alkaline Earth Metal Oxides for Biodiesel Production: Parametric and Kinetic Study // Energy Convers. Manag. X 2021. V. 10 (March 2020). 100047. https://doi.org/10.1016/j.ecmx.2020.100047
  12. Mahloujifar M., Mansournia M. A Comparative Study on the Catalytic Performances of Alkali Metals-Loaded KAlSiO4 for Biodiesel Production from Sesame Oil // Fuel 2021. V. 291 (March 2020). 120145. https://doi.org/10.1016/j.fuel.2021.120145
  13. Chanakaewsomboon I., Phoungthong K., Palamanit,A., Seechamnanturakit V., Cheng C.K. Biodiesel Produced Using Potassium Methoxide Homogeneous Alkaline Catalyst: Effects of Various Factors on Soap Formation. Biomass Convers // Biorefinery 2021. V. 23. P. 12. https://doi.org/10.1007/s13399-021-01787-1
  14. Santos T., Gomes J.F., Puna J., Liquid-Liquid Equilibrium for Ternary System Containing Biodiesel, Methanol and Water // J. Environ. Chem. Eng. 2018. V. 6 (1). P. 984. https://doi.org/10.1016/j.jece.2017.12.068
  15. Shishov A., Trufanov I., Nechaeva D., Bulatov A. A Reversed-Phase Air-Assisted Dispersive Liquid-Liquid Microextraction Coupled with Colorimetric Paper-Based Analytical Device for the Determination of Glycerol // Calcium and Magnesium in Biodiesel Samples, Microchem. J. V. 2019. P. 150. https://doi.org/10.1016/j.microc.2019.104134.
  16. Caland A.L.B. de, Silveira E.L.C., Tubino M., Determination of Sodium, Potassium, Calcium and Magnesium Cations in Biodiesel by Ion Chromatography vol. Anal. Chim. Acta 2012. V. 718. P. 116. https://doi.org/10.1016/j.aca.2011.12.062
  17. Sako A.V.F., Spudeit D.A., Dupim M., Filho W.P.O., Saint’Pierre T.D., de Oliveira M.A.L., Micke G.A. Dual-Opposite End Multiple Injection Method Applied to Sequential Determination of Na+, K+, Ca+2, Mg+2 Ions and Free and Total Glycerol in Biodiesel by Capillary Zone Electrophoresis // J. Chromatogr. A 2018. V. 1570. P. 148. https://doi.org/10.1016/j.chroma.2018.07.079
  18. Pereira F.M., Brum D.M., Lepri F.G., Cassella R.J. Extraction Induced by Emulsion Breaking as a Tool for Ca and Mg Determination in Biodiesel by Fast Sequential Flame Atomic Absorption Spectrometry (FS-FAAS) Using Co as Internal Standard, Microchem // J. 2014. V. 117. P. 172. https://doi.org/10.1016/j.microc.2014.06.026
  19. Lourenço E.C., Eyng E., Bittencourt P.R.S., Duarte F.A., Picoloto R.S., Flores É.L.M. A Simple, Rapid and Low Cost Reversed-Phase Dispersive Liquid-Liquid Microextraction for the Determination of Na, K, Ca and Mg in Biodiesel // Talanta 2019. V. 199 (September 2018). P. 1. https://doi.org/10.1016/j.talanta.2019.02.054
  20. Nogueira Da Silva, K.R., Greco A.D.S., Corazza M.Z., Raposo J.L. Feasibility of Dispersive Liquid-Liquid Microextraction to Determine Ca, Mg, K, and Na in Biodiesel by Atomic Spectrometry // Anal. Methods 2018. V. 10(26). P. 3284. https://doi.org/10.1039/c8ay00770e
  21. Iqbal A.J., Carney W.A., LaCaze S., Theegala C.S. Metals Determination in Biodiesel (B100) by ICP-OES with Microwave Assisted Acid Digestion // Open Anal. Chem. J. 2010. V. 4(1). P. 18. https://doi.org/10.2174/1874065001004010018
  22. Alves B.S.F., Carvalho F.I.M., Cruz A.S., Dantas Filho H.A., Dantas K.G.F. Determination of Ca, Mg, Na, and K in Biodiesel of Oilseed from Northern Brazil // Rev. Virtual Quim. 2018. V. 10 (3). P. 542. https://doi.org/10.21577/1984-6835.20180041
  23. Almeida J.M.S., Dornellas R.M., Yotsumoto-Neto S., Ghisi M., Furtado J.G.C., Marques E.P., Aucélio R.Q., Marques A.L.B. A Simple Electroanalytical Procedure for the Determination of Calcium in Biodiesel // Fuel 2014. V. 115. P. 658. https://doi.org/10.1016/j.fuel.2013.07.088
  24. Lyra A.F.H., Carneiro M.T.W.D., Brandão G.P., Pessoa H.M., de Castro E.V. Determination of Na, K, Ca and Mg in Biodiesel Samples by Flame Atomic Absorption Spectrometry (F AAS) Using Microemulsion as Sample Preparation // Microchem. J. 2010. V. 96(1). P. 180. https://doi.org/10.1016/j.microc.2010.03.005
  25. Amais R.S., Garcia E.E., Monteiro M.R., Nóbrega J.A. Determination of Ca, Mg, and Zn in Biodiesel Microemulsions by FAAS Using Discrete Nebulization // Fuel 2012. V. 93. P. 167. https://doi.org/10.1016/j.fuel.2011.10.042
  26. De Jesus A., Zmozinski A.V., Barbará J.A., Vale M.G.R., Silva M.M. Determination of Calcium and Magnesium in Biodiesel by Flame Atomic Absorption Spectrometry Using Microemulsions as Sample Preparation // Energy and Fuels 2010. V. 24(3). P. 2109. https://doi.org/10.1021/ef9014235
  27. Soares A.S., Fernandes G.M., Moraes L.M.B., Batista A.D., Rocha F.R.P. Single-Phase Determination of Calcium and Magnesium in Biodiesel Using Smartphone-Based Digital Images // Fuel 2022. V. 307 (April 2021). P. 2. https://doi.org/10.1016/j.fuel.2021.121837
  28. Magalhães M., Barros A., Oliveira A., Silva A., Villa R. Dissolution in Ethanol as a Sample Preparation Procedure for Determination of Metals in Biodiesel by FAAS // Curr. Anal. Chem. 2013. V. 10(1). P. 166. https://doi.org/10.2174/1573411011410010015
  29. Edlund M., Visser H., Heitland P. Analysis of Biodiesel by Argon-Oxygen Mixed-Gas Inductively Coupled Plasma Optical Emission Spectrometry // J. Anal. At. Spectrom. 2002. V. 17(3). P. 232. https://doi.org/10.1039/b111476j
  30. Shishov A.Y., Nikolaeva L.S., Moskvin L.N., Bulatov A.V. Fully Automated Spectrophotometric Procedure for Simultaneous Determination of Calcium and Magnesium in Biodiesel // Talanta 2015. V. 135. P. 231 https://doi.org/10.1016/j.talanta.2014.12.014
  31. Fortunato F.M., Bechlin M.A., Neto J.A.G., Donati G.L., Jones B.T. Internal Standard Addition Calibration: Determination of Calcium and Magnesium by Atomic Absorption Spectrometry // Microchem. J. 2015. V. 122. P. 63. https://doi.org/10.1016/j.microc.2015.04.009
  32. Shishov A., Zabrodin A., Moskvin L., Andruch V., Bulatov A. Interfacial Reaction Using Particle-Immobilized Reagents in a Fluidized Reactor. Determination of Glycerol in Biodiesel // Anal. Chim. Acta 2016. V. 914. P. 75. https://doi.org/10.1016/j.aca.2016.02.004
  33. Shishov A., Penkova A., Zabrodin A., Nikolaev K., Dmitrenko M., Ermakov S., Bulatov A. Vapor Permeation-Stepwise Injection Simultaneous Determination of Methanol and Ethanol in Biodiesel with Voltammetric Detectio // Talanta 2016. V. 148. P. 666. https://doi.org/10.1016/j.talanta.2015.05.041
  34. Vakh C.S., Bulatov A.V., Shishov A.Y., Zabrodin A.V., Moskvin L.N. Determination of Silicon, Phosphorus, Iron and Aluminum in Biodiesel by Multicommutated Stepwise Injection Analysis with Classical Least Squares Method // Fuel 2014. V. 135. P. 23 https://doi.org/10.1016/j.fuel.2014.06.059
  35. Samarov A.A., Smirnov M.A., Sokolova M.P., Toikka A.M. Liquid-Liquid Equilibrium Data for the System N-Octane + Toluene + DES at 293.15 and 313.15 K and Atmospheric Pressure // Theor. Found. Chem. Eng. 2018. V. 52(2). P. 258–263. https://doi.org/10.1134/S0040579518020148
  36. Samarov A.A., Shishaeva L.M., Toikka A.M. Phase Equilibria and Extraction Properties of Deep Eutectic Solvents in Alcohol–Ester Systems // Theor. Found. Chem. Eng. 2020. V. 54(4). P. 551. https://doi.org/10.1134/S0040579520040259
  37. Samarov A.A., Toikka M.A., Toikka A.M. Phase Equilibria in Alcohol–Ester Systems with Deep Eutectic Solvents Based on Choline Chloride at 293.15 and 313.15 K // Theor. Found. Chem. Eng. 2021. V. 55(2). P. 290. https://doi.org/10.1134/S004057952102010X
  38. Zinov’eva I.V., Fedorov A.Y., Milevskii N.A., Zakhodyaeva Y.A., Voshkin A.A. A Deep Eutectic Solvent Based on Choline Chloride and Sulfosalicylic Acid: Properties and Applications // Theor. Found. Chem. Eng. 2021. V. 55(3). P. 371–379. https://doi.org/10.1134/S0040579521030246
  39. Zinov’eva I.V., Fedorov A.Y., Milevskii N.A., Zakhodyaeva Y.A., Voshkin A.A.,Dissolution of Metal Oxides in a Choline Chloride–Sulphosalicylic Acid Deep Eutectic Solvent // Theor. Found. Chem. Eng. 2021. V. 55(4). P. 663. https://doi.org/10.1134/S0040579521040370
  40. Milevsky N.A., Zinovieva I.V., Zakhodyaeva Y.A., Voshkin A.A. Extractive Separation of Co/Ni Pair With the Deep Eutectic Solvent Aliquat 336/Timol // Theor. Found. Chem. Eng. 2022. V. 56(1). P. 45. https://doi.org/10.1134/s0040579522010080
  41. Shishov A., Savinov S., Volodina N., Gurev I., Bulatov A. Deep Eutectic Solvent-Based Extraction of Metals from Oil Samples for Elemental Analysis by ICP-OES // Microchem. J. 2022. v. 179 (February), 107456. https://doi.org/10.1016/j.microc.2022.107456
  42. Vilková M., Płotka-Wasylka J., Andruch V. The Role of Water in Deep Eutectic Solvent-Base Extraction. J. Mol. Liq. 2020. V. 304. P. 343. https://doi.org/10.1016/j.molliq.2020.112747
  43. Chromá R., Vilková M., Shepa I., Makoś-Chełstowska P., Andruch V. Investigation of Tetrabutylammonium Bromide-Glycerol-Based Deep Eutectic Solvents and Their Mixtures with Water by Spectroscopic Techniques // J. Mol. Liq. 2021. 330. P. 13. https://doi.org/10.1016/j.molliq.2021.115617
  44. Makoś-Chełstowska P., Chromá R., Andruch V. Closer Look into the Structures of Tetrabutylammonium Bromide–Glycerol-Based Deep Eutectic Solvents and Their Mixtures with Water // J. Mol. Liq. 2021. V. 338. P. 1. https://doi.org/10.1016/j.molliq.2021.116676

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (46KB)
3.

Download (46KB)
4.

Download (43KB)
5.

Download (43KB)

Copyright (c) 2023 А.Ю. Шишов, У.О. Маркова, Е.Р. Низов, М.А. Мелесова, Д.А. Мещева, Ф.М. Крехова, А.В. Булатов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies