Approximation Properties of Repeated de la Vallée-Poussin Means for Piecewise Smooth Functions
- Авторлар: Sharapudinov I.I.1,2, Sharapudinov T.I.1,2, Magomed-Kasumov M.G.1,2
-
Мекемелер:
- Dagestan Scientific Center
- Southern Mathematical Institute
- Шығарылым: Том 60, № 3 (2019)
- Беттер: 542-558
- Бөлім: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172467
- DOI: https://doi.org/10.1134/S0037446619030169
- ID: 172467
Дәйексөз келтіру
Аннотация
Basing on Fourier’s trigonometric sums and the classical de la Vallée-Poussin means, we introduce the repeated de la Vallée-Poussin means. Under study are the approximation properties of the repeated means for piecewise smooth functions. We prove that the repeated means achieve the rate of approximation for the discontinuous piecewise smooth functions which is one or two order higher than the classical de la Vallée-Poussin means and the partial Fourier sums respectively.
Негізгі сөздер
Авторлар туралы
I. Sharapudinov
Dagestan Scientific Center; Southern Mathematical Institute
Хат алмасуға жауапты Автор.
Email: sharapudinov@gmail.com
Ресей, Makhachkala; Vladikavkaz
T. Sharapudinov
Dagestan Scientific Center; Southern Mathematical Institute
Email: rasuldev@gmail.com
Ресей, Makhachkala; Vladikavkaz
M. Magomed-Kasumov
Dagestan Scientific Center; Southern Mathematical Institute
Хат алмасуға жауапты Автор.
Email: rasuldev@gmail.com
Ресей, Makhachkala; Vladikavkaz
Қосымша файлдар
