Approximation Properties of Repeated de la Vallée-Poussin Means for Piecewise Smooth Functions
- 作者: Sharapudinov I.I.1,2, Sharapudinov T.I.1,2, Magomed-Kasumov M.G.1,2
-
隶属关系:
- Dagestan Scientific Center
- Southern Mathematical Institute
- 期: 卷 60, 编号 3 (2019)
- 页面: 542-558
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172467
- DOI: https://doi.org/10.1134/S0037446619030169
- ID: 172467
如何引用文章
详细
Basing on Fourier’s trigonometric sums and the classical de la Vallée-Poussin means, we introduce the repeated de la Vallée-Poussin means. Under study are the approximation properties of the repeated means for piecewise smooth functions. We prove that the repeated means achieve the rate of approximation for the discontinuous piecewise smooth functions which is one or two order higher than the classical de la Vallée-Poussin means and the partial Fourier sums respectively.
作者简介
I. Sharapudinov
Dagestan Scientific Center; Southern Mathematical Institute
编辑信件的主要联系方式.
Email: sharapudinov@gmail.com
俄罗斯联邦, Makhachkala; Vladikavkaz
T. Sharapudinov
Dagestan Scientific Center; Southern Mathematical Institute
Email: rasuldev@gmail.com
俄罗斯联邦, Makhachkala; Vladikavkaz
M. Magomed-Kasumov
Dagestan Scientific Center; Southern Mathematical Institute
编辑信件的主要联系方式.
Email: rasuldev@gmail.com
俄罗斯联邦, Makhachkala; Vladikavkaz
补充文件
