Degenerate Linear Evolution Equations with the Riemann–Liouville Fractional Derivative


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the unique solvability of the Cauchy and Schowalter–Sidorov type problems in a Banach space for an evolution equation with a degenerate operator at the fractional derivative under the assumption that the operator acting on the unknown function in the equation is p-bounded with respect to the operator at the fractional derivative. The conditions are found ensuring existence of a unique solution representable by means of the Mittag-Leffler type functions. Some abstract results are illustrated by an example of a finite-dimensional degenerate system of equations of a fractional order and employed in the study of unique solvability of an initial-boundary value problem for the linearized Scott-Blair system of dynamics of a medium.

作者简介

V. Fedorov

Chelyabinsk State University South Ural State University

编辑信件的主要联系方式.
Email: kar@csu.ru
俄罗斯联邦, Chelyabinsk

M. Plekhanova

Chelyabinsk State University South Ural State University

Email: kar@csu.ru
俄罗斯联邦, Chelyabinsk

R. Nazhimov

Chelyabinsk State University

Email: kar@csu.ru
俄罗斯联邦, Chelyabinsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018