Degenerate Linear Evolution Equations with the Riemann–Liouville Fractional Derivative


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the unique solvability of the Cauchy and Schowalter–Sidorov type problems in a Banach space for an evolution equation with a degenerate operator at the fractional derivative under the assumption that the operator acting on the unknown function in the equation is p-bounded with respect to the operator at the fractional derivative. The conditions are found ensuring existence of a unique solution representable by means of the Mittag-Leffler type functions. Some abstract results are illustrated by an example of a finite-dimensional degenerate system of equations of a fractional order and employed in the study of unique solvability of an initial-boundary value problem for the linearized Scott-Blair system of dynamics of a medium.

Авторлар туралы

V. Fedorov

Chelyabinsk State University South Ural State University

Хат алмасуға жауапты Автор.
Email: kar@csu.ru
Ресей, Chelyabinsk

M. Plekhanova

Chelyabinsk State University South Ural State University

Email: kar@csu.ru
Ресей, Chelyabinsk

R. Nazhimov

Chelyabinsk State University

Email: kar@csu.ru
Ресей, Chelyabinsk

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018