Degenerate Linear Evolution Equations with the Riemann–Liouville Fractional Derivative


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the unique solvability of the Cauchy and Schowalter–Sidorov type problems in a Banach space for an evolution equation with a degenerate operator at the fractional derivative under the assumption that the operator acting on the unknown function in the equation is p-bounded with respect to the operator at the fractional derivative. The conditions are found ensuring existence of a unique solution representable by means of the Mittag-Leffler type functions. Some abstract results are illustrated by an example of a finite-dimensional degenerate system of equations of a fractional order and employed in the study of unique solvability of an initial-boundary value problem for the linearized Scott-Blair system of dynamics of a medium.

Sobre autores

V. Fedorov

Chelyabinsk State University South Ural State University

Autor responsável pela correspondência
Email: kar@csu.ru
Rússia, Chelyabinsk

M. Plekhanova

Chelyabinsk State University South Ural State University

Email: kar@csu.ru
Rússia, Chelyabinsk

R. Nazhimov

Chelyabinsk State University

Email: kar@csu.ru
Rússia, Chelyabinsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018