Sobolev Embedding Theorems and Generalizations for Functions on a Metric Measure Space
- 作者: Romanovskiĭ N.N.1
-
隶属关系:
- Sobolev Institute of Mathematics
- 期: 卷 59, 编号 1 (2018)
- 页面: 126-135
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171690
- DOI: https://doi.org/10.1134/S0037446618010147
- ID: 171690
如何引用文章
详细
Considering the metric case, we define an analog of the Sobolev space of functions with generalized derivatives of order greater than 1. The space of functions with fractional generalized derivatives is also treated. We prove generalizations of the Sobolev embedding theorems and Gagliardo–Nirenberg interpolation inequalities to the metric case.
作者简介
N. Romanovskiĭ
Sobolev Institute of Mathematics
编辑信件的主要联系方式.
Email: nnrom@math.nsc.ru
俄罗斯联邦, Novosibirsk
补充文件
