Sobolev Embedding Theorems and Generalizations for Functions on a Metric Measure Space
- Autores: Romanovskiĭ N.N.1
-
Afiliações:
- Sobolev Institute of Mathematics
- Edição: Volume 59, Nº 1 (2018)
- Páginas: 126-135
- Seção: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171690
- DOI: https://doi.org/10.1134/S0037446618010147
- ID: 171690
Citar
Resumo
Considering the metric case, we define an analog of the Sobolev space of functions with generalized derivatives of order greater than 1. The space of functions with fractional generalized derivatives is also treated. We prove generalizations of the Sobolev embedding theorems and Gagliardo–Nirenberg interpolation inequalities to the metric case.
Sobre autores
N. Romanovskiĭ
Sobolev Institute of Mathematics
Autor responsável pela correspondência
Email: nnrom@math.nsc.ru
Rússia, Novosibirsk
Arquivos suplementares
