On a Certain Sub-Riemannian Geodesic Flow on the Heisenberg Group
- Авторлар: Agapov S.V.1, Borchashvili M.R.2
-
Мекемелер:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Шығарылым: Том 58, № 6 (2017)
- Беттер: 943-951
- Бөлім: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171538
- DOI: https://doi.org/10.1134/S0037446617060039
- ID: 171538
Дәйексөз келтіру
Аннотация
Under study is an integrable geodesic flow of a left-invariant sub-Riemannian metric for a right-invariant distribution on the Heisenberg group. We obtain the classification of the trajectories of this flow. There are a few examples of trajectories in the paper which correspond to various values of the first integrals. These trajectories are obtained by numerical integration of the Hamiltonian equations. It is shown that for some values of the first integrals we can obtain explicit formulae for geodesics by inverting the corresponding Legendre elliptic integrals.
Негізгі сөздер
Авторлар туралы
S. Agapov
Sobolev Institute of Mathematics
Хат алмасуға жауапты Автор.
Email: agapov@math.nsc.ru
Ресей, Novosibirsk
M. Borchashvili
Novosibirsk State University
Email: agapov@math.nsc.ru
Ресей, Novosibirsk
Қосымша файлдар
