On a Certain Sub-Riemannian Geodesic Flow on the Heisenberg Group


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Under study is an integrable geodesic flow of a left-invariant sub-Riemannian metric for a right-invariant distribution on the Heisenberg group. We obtain the classification of the trajectories of this flow. There are a few examples of trajectories in the paper which correspond to various values of the first integrals. These trajectories are obtained by numerical integration of the Hamiltonian equations. It is shown that for some values of the first integrals we can obtain explicit formulae for geodesics by inverting the corresponding Legendre elliptic integrals.

作者简介

S. Agapov

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: agapov@math.nsc.ru
俄罗斯联邦, Novosibirsk

M. Borchashvili

Novosibirsk State University

Email: agapov@math.nsc.ru
俄罗斯联邦, Novosibirsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017