On a Certain Sub-Riemannian Geodesic Flow on the Heisenberg Group
- 作者: Agapov S.V.1, Borchashvili M.R.2
-
隶属关系:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- 期: 卷 58, 编号 6 (2017)
- 页面: 943-951
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171538
- DOI: https://doi.org/10.1134/S0037446617060039
- ID: 171538
如何引用文章
详细
Under study is an integrable geodesic flow of a left-invariant sub-Riemannian metric for a right-invariant distribution on the Heisenberg group. We obtain the classification of the trajectories of this flow. There are a few examples of trajectories in the paper which correspond to various values of the first integrals. These trajectories are obtained by numerical integration of the Hamiltonian equations. It is shown that for some values of the first integrals we can obtain explicit formulae for geodesics by inverting the corresponding Legendre elliptic integrals.
作者简介
S. Agapov
Sobolev Institute of Mathematics
编辑信件的主要联系方式.
Email: agapov@math.nsc.ru
俄罗斯联邦, Novosibirsk
M. Borchashvili
Novosibirsk State University
Email: agapov@math.nsc.ru
俄罗斯联邦, Novosibirsk
补充文件
