Intersections of Three Nilpotent Subgroups of Finite Groups
- Autores: Zenkov V.I.1
-
Afiliações:
- Krasovskii Institute of Mathematics and Mechanics
- Edição: Volume 60, Nº 4 (2019)
- Páginas: 605-612
- Seção: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172496
- DOI: https://doi.org/10.1134/S0037446619040062
- ID: 172496
Citar
Resumo
Under study is the conjecture that for every three nilpotent subgroups A, B, and C of a finite group G there are elements x and y such that A ∩ Bx ∩ Cy ≤ F(G), where F(G) is the Fitting subgroup of G. We prove that a counterexample of minimal order to this conjecture is an almost simple group. The proof uses the classification of finite simple groups.
Palavras-chave
Sobre autores
V. Zenkov
Krasovskii Institute of Mathematics and Mechanics
Autor responsável pela correspondência
Email: v1i9z52@mail.ru
Rússia, Ekaterinburg
Arquivos suplementares
