Intersections of Three Nilpotent Subgroups of Finite Groups
- Авторлар: Zenkov V.I.1
-
Мекемелер:
- Krasovskii Institute of Mathematics and Mechanics
- Шығарылым: Том 60, № 4 (2019)
- Беттер: 605-612
- Бөлім: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172496
- DOI: https://doi.org/10.1134/S0037446619040062
- ID: 172496
Дәйексөз келтіру
Аннотация
Under study is the conjecture that for every three nilpotent subgroups A, B, and C of a finite group G there are elements x and y such that A ∩ Bx ∩ Cy ≤ F(G), where F(G) is the Fitting subgroup of G. We prove that a counterexample of minimal order to this conjecture is an almost simple group. The proof uses the classification of finite simple groups.
Негізгі сөздер
Авторлар туралы
V. Zenkov
Krasovskii Institute of Mathematics and Mechanics
Хат алмасуға жауапты Автор.
Email: v1i9z52@mail.ru
Ресей, Ekaterinburg
Қосымша файлдар
