The Rogers Semilattices of Generalized Computable Enumerations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the cardinality and structural properties of the Rogers semilattice of generalized computable enumerations with arbitrary noncomputable oracles and oracles of hyperimmune Turing degree. We show the infinity of the Rogers semilattice of generalized computable enumerations of an arbitrary nontrivial family with a noncomputable oracle. In the case of oracles of hyperimmune degree we prove that the Rogers semilattice of an arbitrary infinite family includes an ideal without minimal elements and establish that the top, if present, is a limit element under the condition that the family contains the inclusion-least set.

Sobre autores

M. Faizrahmanov

Kazan (Volga Region) Federal University

Autor responsável pela correspondência
Email: marat.faizrahmanov@gmail.com
Rússia, Kazan

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017