The Rogers Semilattices of Generalized Computable Enumerations
- 作者: Faizrahmanov M.K.1
-
隶属关系:
- Kazan (Volga Region) Federal University
- 期: 卷 58, 编号 6 (2017)
- 页面: 1104-1110
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171622
- DOI: https://doi.org/10.1134/S0037446617060192
- ID: 171622
如何引用文章
详细
We study the cardinality and structural properties of the Rogers semilattice of generalized computable enumerations with arbitrary noncomputable oracles and oracles of hyperimmune Turing degree. We show the infinity of the Rogers semilattice of generalized computable enumerations of an arbitrary nontrivial family with a noncomputable oracle. In the case of oracles of hyperimmune degree we prove that the Rogers semilattice of an arbitrary infinite family includes an ideal without minimal elements and establish that the top, if present, is a limit element under the condition that the family contains the inclusion-least set.
作者简介
M. Faizrahmanov
Kazan (Volga Region) Federal University
编辑信件的主要联系方式.
Email: marat.faizrahmanov@gmail.com
俄罗斯联邦, Kazan
补充文件
