The Rogers Semilattices of Generalized Computable Enumerations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the cardinality and structural properties of the Rogers semilattice of generalized computable enumerations with arbitrary noncomputable oracles and oracles of hyperimmune Turing degree. We show the infinity of the Rogers semilattice of generalized computable enumerations of an arbitrary nontrivial family with a noncomputable oracle. In the case of oracles of hyperimmune degree we prove that the Rogers semilattice of an arbitrary infinite family includes an ideal without minimal elements and establish that the top, if present, is a limit element under the condition that the family contains the inclusion-least set.

作者简介

M. Faizrahmanov

Kazan (Volga Region) Federal University

编辑信件的主要联系方式.
Email: marat.faizrahmanov@gmail.com
俄罗斯联邦, Kazan

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017