Commuting Krichever–Novikov differential operators with polynomial coefficients
- 作者: Zheglov A.B.1, Mironov A.E.2, Saparbayeva B.T.2
-
隶属关系:
- Moscow State University
- Sobolev Institute of Mathematics Novosibirsk State University
- 期: 卷 57, 编号 5 (2016)
- 页面: 819-823
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/170700
- DOI: https://doi.org/10.1134/S0037446616050104
- ID: 170700
如何引用文章
详细
Under study are some commuting rank 2 differential operators with polynomial coefficients. We prove that, for every spectral curve of the form w2 = z3+c2z2+c1z+c0 with arbitrary coefficients ci, there exist commuting nonselfadjoint operators of orders 4 and 6 with polynomial coefficients of arbitrary degree.
作者简介
A. Zheglov
Moscow State University
编辑信件的主要联系方式.
Email: azheglov@mech.math.msu.su
俄罗斯联邦, Moscow
A. Mironov
Sobolev Institute of Mathematics Novosibirsk State University
Email: azheglov@mech.math.msu.su
俄罗斯联邦, Novosibirsk
B. Saparbayeva
Sobolev Institute of Mathematics Novosibirsk State University
Email: azheglov@mech.math.msu.su
俄罗斯联邦, Novosibirsk
补充文件
