The Partial Clone of Linear Formulas
- Авторлар: Denecke K.1
-
Мекемелер:
- Institute of Mathematics
- Шығарылым: Том 60, № 4 (2019)
- Беттер: 572-584
- Бөлім: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172481
- DOI: https://doi.org/10.1134/S0037446619040037
- ID: 172481
Дәйексөз келтіру
Аннотация
A term t is linear if no variable occurs more than once in t. An identity s ≈ t is said to be linear if s and t are linear terms. Identities are particular formulas. As for terms superposition operations can be defined for formulas too. We define the arbitrary linear formulas and seek for a condition for the set of all linear formulas to be closed under superposition. This will be used to define the partial superposition operations on the set of linear formulas and a partial many-sorted algebra Formclonelin(τ, τ′). This algebra has similar properties with the partial many-sorted clone of all linear terms. We extend the concept of a hypersubstitution of type τ to the linear hypersubstitutions of type (τ, τ′) for algebraic systems. The extensions of linear hypersubstitutions of type (τ, τ′) send linear formulas to linear formulas, presenting weak endomorphisms of Formclonelin(τ, τ′).
Негізгі сөздер
Авторлар туралы
K. Denecke
Institute of Mathematics
Хат алмасуға жауапты Автор.
Email: klausdenecke@hotmail.com
Германия, Potsdam
Қосымша файлдар
