The Partial Clone of Linear Formulas


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A term t is linear if no variable occurs more than once in t. An identity st is said to be linear if s and t are linear terms. Identities are particular formulas. As for terms superposition operations can be defined for formulas too. We define the arbitrary linear formulas and seek for a condition for the set of all linear formulas to be closed under superposition. This will be used to define the partial superposition operations on the set of linear formulas and a partial many-sorted algebra Formclonelin(τ, τ′). This algebra has similar properties with the partial many-sorted clone of all linear terms. We extend the concept of a hypersubstitution of type τ to the linear hypersubstitutions of type (τ, τ′) for algebraic systems. The extensions of linear hypersubstitutions of type (τ, τ′) send linear formulas to linear formulas, presenting weak endomorphisms of Formclonelin(τ, τ′).

作者简介

K. Denecke

Institute of Mathematics

编辑信件的主要联系方式.
Email: klausdenecke@hotmail.com
德国, Potsdam

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019