Slices and Levels of Extensions of the Minimal Logic
- Авторлар: Maksimova L.L.1, Yun V.F.1
-
Мекемелер:
- Sobolev Institute of Mathematics
- Шығарылым: Том 58, № 6 (2017)
- Беттер: 1042-1051
- Бөлім: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171585
- DOI: https://doi.org/10.1134/S0037446617060131
- ID: 171585
Дәйексөз келтіру
Аннотация
We consider two classifications of extensions of Johansson’s minimal logic J. Logics and then calculi are divided into levels and slices with numbers from 0 to ω. We prove that the first classification is strongly decidable over J, i.e., from any finite list Rul of axiom schemes and inference rules, we can effectively compute the level number of the calculus (J + Rul). We prove the strong decidability of each slice with finite number: for each n and arbitrary finite Rul, we can effectively check whether the calculus (J + Rul) belongs to the nth slice.
Негізгі сөздер
Авторлар туралы
L. Maksimova
Sobolev Institute of Mathematics
Хат алмасуға жауапты Автор.
Email: lmaksi@math.nsc.ru
Ресей, Novosibirsk
V. Yun
Sobolev Institute of Mathematics
Email: lmaksi@math.nsc.ru
Ресей, Novosibirsk
Қосымша файлдар
