Slices and Levels of Extensions of the Minimal Logic


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider two classifications of extensions of Johansson’s minimal logic J. Logics and then calculi are divided into levels and slices with numbers from 0 to ω. We prove that the first classification is strongly decidable over J, i.e., from any finite list Rul of axiom schemes and inference rules, we can effectively compute the level number of the calculus (J + Rul). We prove the strong decidability of each slice with finite number: for each n and arbitrary finite Rul, we can effectively check whether the calculus (J + Rul) belongs to the nth slice.

Sobre autores

L. Maksimova

Sobolev Institute of Mathematics

Autor responsável pela correspondência
Email: lmaksi@math.nsc.ru
Rússia, Novosibirsk

V. Yun

Sobolev Institute of Mathematics

Email: lmaksi@math.nsc.ru
Rússia, Novosibirsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017