Slices and Levels of Extensions of the Minimal Logic


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider two classifications of extensions of Johansson’s minimal logic J. Logics and then calculi are divided into levels and slices with numbers from 0 to ω. We prove that the first classification is strongly decidable over J, i.e., from any finite list Rul of axiom schemes and inference rules, we can effectively compute the level number of the calculus (J + Rul). We prove the strong decidability of each slice with finite number: for each n and arbitrary finite Rul, we can effectively check whether the calculus (J + Rul) belongs to the nth slice.

作者简介

L. Maksimova

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: lmaksi@math.nsc.ru
俄罗斯联邦, Novosibirsk

V. Yun

Sobolev Institute of Mathematics

Email: lmaksi@math.nsc.ru
俄罗斯联邦, Novosibirsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017