Slices and Levels of Extensions of the Minimal Logic
- Autores: Maksimova L.L.1, Yun V.F.1
-
Afiliações:
- Sobolev Institute of Mathematics
- Edição: Volume 58, Nº 6 (2017)
- Páginas: 1042-1051
- Seção: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171585
- DOI: https://doi.org/10.1134/S0037446617060131
- ID: 171585
Citar
Resumo
We consider two classifications of extensions of Johansson’s minimal logic J. Logics and then calculi are divided into levels and slices with numbers from 0 to ω. We prove that the first classification is strongly decidable over J, i.e., from any finite list Rul of axiom schemes and inference rules, we can effectively compute the level number of the calculus (J + Rul). We prove the strong decidability of each slice with finite number: for each n and arbitrary finite Rul, we can effectively check whether the calculus (J + Rul) belongs to the nth slice.
Palavras-chave
Sobre autores
L. Maksimova
Sobolev Institute of Mathematics
Autor responsável pela correspondência
Email: lmaksi@math.nsc.ru
Rússia, Novosibirsk
V. Yun
Sobolev Institute of Mathematics
Email: lmaksi@math.nsc.ru
Rússia, Novosibirsk
Arquivos suplementares
