Slices and Levels of Extensions of the Minimal Logic
- 作者: Maksimova L.L.1, Yun V.F.1
-
隶属关系:
- Sobolev Institute of Mathematics
- 期: 卷 58, 编号 6 (2017)
- 页面: 1042-1051
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171585
- DOI: https://doi.org/10.1134/S0037446617060131
- ID: 171585
如何引用文章
详细
We consider two classifications of extensions of Johansson’s minimal logic J. Logics and then calculi are divided into levels and slices with numbers from 0 to ω. We prove that the first classification is strongly decidable over J, i.e., from any finite list Rul of axiom schemes and inference rules, we can effectively compute the level number of the calculus (J + Rul). We prove the strong decidability of each slice with finite number: for each n and arbitrary finite Rul, we can effectively check whether the calculus (J + Rul) belongs to the nth slice.
作者简介
L. Maksimova
Sobolev Institute of Mathematics
编辑信件的主要联系方式.
Email: lmaksi@math.nsc.ru
俄罗斯联邦, Novosibirsk
V. Yun
Sobolev Institute of Mathematics
Email: lmaksi@math.nsc.ru
俄罗斯联邦, Novosibirsk
补充文件
