Metrics on Projections of the Von Neumann Algebra Associated with Tracial Functionals


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let φ be a positive functional on a von Neumann algebra \(\mathscr{A}\) and let \(\mathscr{A}^{\rm{pr}}\) be the projection lattice in \(\mathscr{A}\). Given \(P,Q \in \mathscr{A}^{\rm{pr}}\), put ρφ(P, Q) = φ(∣PQ∣) and dφ(P, Q) = φ(PQPQ). Then ρφ(P, Q) ≤ dφ(P, Q) and ρφ(P, Q) = dφ(P, Q) provided that PQ = QP. The mapping ρφ (or dφ) meets the triangle inequality if and only if φ is a tracial functional. If τ is a faithful tracial functional then ρτ and dτ are metrics on \(\mathscr{A}^{\rm{pr}}\). Moreover, if τ is normal then (\(\mathscr{A}^{\rm{pr}}\), ρτ) and (\(\mathscr{A}^{\rm{pr}}\), dτ) are complete metric spaces. Convergences with respect to ρτ and dτ are equivalent if and only if \(\mathscr{A}\) is abelian; in this case ρτ = dτ. We give one more criterion for commutativity of \(\mathscr{A}\) in terms of inequalities.

Авторлар туралы

A. Bikchentaev

Lobachevskii institute of mathematics and mechanics of Kazan (Volga Region)

Хат алмасуға жауапты Автор.
Email: Airat.Bikchentaev@kpfu.ru
Ресей, Kazan

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019