The Fourier–Faber–Schauder Series Unconditionally Divergent in Measure


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We prove that, for every ε ∈ (0, 1), there is a measurable set E ⊂ [0, 1] whose measure |E| satisfies the estimate |E| > 1−ε and, for every function fC[0,1], there is ˜ fC[0,1] coinciding with f on E whose expansion in the Faber–Schauder system diverges in measure after a rearrangement.

Авторлар туралы

M. Grigoryan

Yerevan State University

Хат алмасуға жауапты Автор.
Email: gmarting@ysu.am
Армения, Yerevan

A. Sargsyan

Russian–Armenian University

Email: gmarting@ysu.am
Армения, Yerevan

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018