The Fourier–Faber–Schauder Series Unconditionally Divergent in Measure
- Авторлар: Grigoryan M.G.1, Sargsyan A.A.2
-
Мекемелер:
- Yerevan State University
- Russian–Armenian University
- Шығарылым: Том 59, № 5 (2018)
- Беттер: 835-842
- Бөлім: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172031
- DOI: https://doi.org/10.1134/S0037446618050087
- ID: 172031
Дәйексөз келтіру
Аннотация
We prove that, for every ε ∈ (0, 1), there is a measurable set E ⊂ [0, 1] whose measure |E| satisfies the estimate |E| > 1−ε and, for every function f ∈ C[0,1], there is ˜ f ∈ C[0,1] coinciding with f on E whose expansion in the Faber–Schauder system diverges in measure after a rearrangement.
Негізгі сөздер
Авторлар туралы
M. Grigoryan
Yerevan State University
Хат алмасуға жауапты Автор.
Email: gmarting@ysu.am
Армения, Yerevan
A. Sargsyan
Russian–Armenian University
Email: gmarting@ysu.am
Армения, Yerevan
Қосымша файлдар
