The Fourier–Faber–Schauder Series Unconditionally Divergent in Measure


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove that, for every ε ∈ (0, 1), there is a measurable set E ⊂ [0, 1] whose measure |E| satisfies the estimate |E| > 1−ε and, for every function fC[0,1], there is ˜ fC[0,1] coinciding with f on E whose expansion in the Faber–Schauder system diverges in measure after a rearrangement.

作者简介

M. Grigoryan

Yerevan State University

编辑信件的主要联系方式.
Email: gmarting@ysu.am
亚美尼亚, Yerevan

A. Sargsyan

Russian–Armenian University

Email: gmarting@ysu.am
亚美尼亚, Yerevan

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018