Optimal cubature formulas for calculation of multidimensional integrals in weighted Sobolev spaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Optimal cubature formulas are constructed for calculations of multidimensional integrals in weighted Sobolev spaces. We consider some classes of functions defined in the cube Ω = [-1, 1]l, l = 1, 2,..., and having bounded partial derivatives up to the order r in Ω and the derivatives of jth order (r < j ≤ s) whose modulus tends to infinity as power functions of the form (d(x, Г))-(j-r), where x ∈ Ω Г, x = (x1,..., xl), Г = ∂Ω, and d(x, Г) is the distance from x to Г.

作者简介

I. Boikov

Penza State University

编辑信件的主要联系方式.
Email: i.v.boykov@gmail.com
俄罗斯联邦, Penza

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016