Thermodynamic Simulation of the Manufacture of Fe–Si–Ni–Cr Alloys


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The reduction of the elements of the system containing (wt %): 40 Cr2O3, 21 FeO, 15 Al2O3, 6 SiO2, 16 MgO, 2 CaO, 0.006 P2O5 is subjected to thermodynamic simulation when the CaO content increases to a basicity of 3.15. Ferrosilicone (28% Fe, 65% Si; 7% Ni) is used as a reducer. For the simulation, the HSC Chemistry 6.12 software package developed by Outokumpu Research Oy (Finland) is used, and new thermodynamic constants for CrO and corrected constants for CaCr2O4 were introduced into its database. An increase in the reduction of chromium by 32.7% (from 64 to 95.1%) is found to occur when the slag basicity increases from 0.07 to 1.86. The rational slag basicity is 1.86–1.9. An increase in the reducer consumption from 0.5 to 1.05mred leads to an increase in the reduction of chromium by 52.4 to 95.1%. The chemical composition of the synthesized metal is (wt %) 50.4 Cr, 1.97 Si, 3.3 Ni, 0.21 Al, 0.0050 P, and Fe for balance. The simulation results can be used to calculate the reduction of the chromium ore elements using ferrosiliconickel.

作者简介

V. Zhuchkov

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: zferro@mail.ru
俄罗斯联邦, Yekaterinburg, 620016

O. Zayakin

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: zferro@mail.ru
俄罗斯联邦, Yekaterinburg, 620016

V. Salina

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: valentina_salina@mail.ru
俄罗斯联邦, Yekaterinburg, 620016


版权所有 © Pleiades Publishing, Ltd., 2019
##common.cookie##