Chemical composition and biological activity of extracts from wild Rhamnaceae species of Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review presents data from literature sources on the component composition and biological activity of aboveground and underground parts of 16 wild Rhamnaceae species from Russia. Species form 4 genera of Rhamnaceae (Rhamnus L., Ziziphus Mill., Paliurus Mill. and Frangula Mill.) are found in the studied area, 3 of which are represented by one species: Ziziphus jujuba Mill., Paliurus spina-cristi Mill. and Frangula alnus Mill. The chemosystematics does not contradict the genus system. In recent decades, studies have been carried out on the component composition: organic acids (malic, succinic, tartaric), vitamins (C, B1 and P), alkaloids, polyphenols, flavonoids (rutin, hyperin, isoquercitrin, etc.), cyanidins, anthraquinones and sterols have been found. Extracts of wild-growing Rhamnaceae species, as well as their individual components, have varied bioactivity like antibacterial, antimicrobial, antifungal, antiviral, cytotoxic, inhibitory, antitumor, anti-inflammatory, wound healing, and antioxidant. The fruits and bark of Rhamnus, Ziziphus, Paliurus and Frangula species have a laxative, wound-healing, moderate anti-inflammatory, astringent and antibactericidal effect. Z. jujuba is also effective for the prevention and treatment of liver damage, obesity, hypertension and anemia, and is used in herbal mixtures to treat stroke and influenza virus. For 3 Caucasian and 4 Siberian and Far Eastern species of the genus Rhamnus, data on the component composition and biological activity, as well as the resource potential, are scant or absent. Literature data on the component composition and biological activity of the above-ground and underground parts of four genera and 12 species of the Rhamnaceae family were found.

About the authors

D. A. Yudova

Botanical Institute named after V. L. Komarov RAS, Saint Petersburg, Russia

Email: DYudova@binran.ru
Saint Petersburg, Russia

A. A. Naumenko

Botanical Institute named after V. L. Komarov RAS, Saint Petersburg, Russia

Author for correspondence.
Email: ANaumenko@binran.ru
Saint Petersburg, Russia

References

  1. Grubov V. I. 1949. [Monographic review of the genus Rhamnus L. s. l.] – Flora et Systematica Plantae Vasculares. Academiae Scientiarum USSR. 8: 243–423. (In Russian)
  2. Grubov V. I. [Key to the vascular plants of Mongolia (with an atlas)]. 1982. Leningrad. 443 p. (In Russian)
  3. Golovkin B. N., Zolkin S. Yu., Trofimova I. A. 2019. Medicinal Botany. Moscow. 326 p. https://www.elibrary.ru/esvjvl (In Russian)
  4. Popova O. A. 2007. Rhamnus x pissjakuovae (Rhamnaceae), a new hybrid species from the Chita region. — Botanicheskii Zhurnal. 92(4): 554–557. (In Russian)
  5. Litvinskaya S. A. 2011. [Medicinal plants of Kuban natural flora: regional phyto-nature management]. Krasnodar. 144 p. (In Russian)
  6. Gubanov I. A., Kiseleva K. V., Novikov V. S. 1993. [Wild useful plants]. 2nd ed. Moscow. 300 p. (In Russian)
  7. Kucherov E. V., Bajkov G. K., Gufranova I. B. 1976. [Useful plants of the Southern Urals]. Moscow. 264 p. (In Russian)
  8. Mitra S., Anjum J., Muni M., Das R., Rauf A., Islam F., Bin Emran T., Semwal P., Hemeg H. A., Alhumaydhi F. A., Wilairatana P. 2022. Exploring the journey of emodin as a potential neuroprotective agent: Novel therapeutic insights with molecular mechanism of action. — Biomed. Pharmacother. 149: 112877. https://doi.org/10.1016/j.biopha.2022.112877
  9. Shagova L. I., Bityukova N. V. 2010. [Family Rhamnaceae Juss.]. — In: [Plant Resources of Russia: Wild flowering plants, their component composition and biological activity. Families Fabaceae–Apiaceae]. Vol. 3. St. Petersburg; Moscow. P. 139–142. (In Russian)
  10. Zengin G., Fernández-Ochoa Á., de la Luz Cádiz-Gurrea M., Leyva-Jiménez F. J., Segura-Carretero A., Elbasan F., Yildiztugay E., Malik S., Khalid A., Abdalla A. N., Mahomoodally M. F. 2023. Phytochemical profile and biological activities of different extracts of three parts of Paliurus spina-christi: A linkage between structure and ability. — Antioxidants. 12(2): 255. https://doi.org/10.3390/antiox12020255
  11. Oguz F., Pulat C. C., Ilhan S., Atmaka H. 2022. GC–MS analysis and potential apoptotic effect of Paliurus spina-christi Mill. leaf and flower extracts against breast cancer cells. — Sak. Univ. J. Sci. 26: 357–364. https://doi.org/10.16984/saufenbilder.1029351
  12. Velcheva M. 1993. Constituents of Paliurus spina-christi. — Fitoterapia. 64(3): 284–285.
  13. Jerković I., Tuberoso C. I.G., Marijanović Z., Jelić M., Kasum A. 2009. Headspace, volatile and semi-volatile patterns of Paliurus spina-christi unifloral honey as markers of botanical origin. — Food Chem. 112(1): 239–245. https://doi.org/10.1016/j.foodchem.2008.05.080
  14. Brantner A. H., Maleš Ž. 1990. Investigations on the flavonoid glycosides of Paliurus spina-christi. — Planta Med. 56(6): 582–583. https://doi.org/10.1055/s-2006-961187
  15. Brantner A. H., Maleš Ž. 1999. Quality assessment of Paliurus spina-christi extracts. — J. Ethnopharmacol. 66(2): 175–179. https://doi.org/10.1016/S0378-8741(98)00180-9
  16. Güner N. D. 2005. Paliurus spina-christi Mill. Ankara, Turkey: Üzerinde Farmakognozik Araştırmalar, MSc, Hacettepe University, Graduate School of Health Sciences.
  17. Zor M., Aydin S., Güner N. D., Başaran N., Başaran A. A. 2017. Antigenotoxic properties of Paliurus spina-christi Mill fruits and their active compounds. — BMC Complement. Altern. Med. 17(1): 229. https://doi.org/10.1186/s12906-017-1732-1
  18. Takım K., Işık M. 2020. Phytochemical analysis of Paliurus spina-christi fruit and its effects on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rats. — Appl. Biochem. Biotechnol. 191(4): 1353–1368. https://doi.org/10.1007/s12010-020-03287-w
  19. Amountzias V., Abatis D., Drakopoulos A., Zoidis G., Aligiannis N. 2023. Cyclopeptide alkaloids from the Greek shrub Paliurus spina-christi and their in silico binding affinity to Dipeptidyl Peptidase IV. — Nat. Prod. Res. 2024: 1–11. https://doi.org/10.1080/14786419.2024.2340755
  20. Esfahani S. M. M., Tarighi P., Dianat K., Ashour T. M., Mottaghi-Dastjerdi N., Aghsami M., Sabernavaei M., Montazeri H. 2023. Paliurus spina-christi Mill. fruit extracts improve glucose uptake and activate the insulin signaling pathways in HepG2 insulin-resistant cells. — BMC Complement. Med. Ther. 23(1): 151. https://doi.org/10.1186/s12906-023-03977-y
  21. Пастушенков Л. В. 2012. Лекарственные растения. Использование в народной медицине и быту. 5-е изд. перераб. и доп. СПб. 432 с (In Russian).
  22. Pastushenkov L. V. 2012. [Medicinal plants. Their use in folk medicine and everyday life]. 5th ed. St. Petersburg. 432 p.
  23. Gammerman A. F., Kadaev G. N., Yacenko-Xmelevskij A. A. 1990. Lekarstvenny`e rasteniya (Rasteniya-celiteli): Sprav. Posobie [Medicinal plants (Celite plants): Reference]. 4-e izd., ispr. i dop. Moscow. 544 p. https://www.booksite.ru/fulltext/rusles/lekrast/text.pdf (Accessed 11.11.2024) (In Russian)
  24. Chen J., Tsim K. W. K. 2020. A review of edible jujube, the Ziziphus jujuba fruit: a health food supplement for anemia prevalence. — Front. Pharmacol. 11: 593655. https://doi.org/10.3389/fphar.2020.593655
  25. Lu Y., Bao T., Mo J., Ni J., Chen W. 2021. Research advances in bioactive components and health benefits of jujube (Ziziphus jujuba Mill.) fruit. — J. Zhejiang Univ. Sci B. 22(6): 431–449. http://doi.org/10.1631/jzus.B2000594
  26. Ghasemzadeh Rahbardar M., Fazeli Kakhki H., Hosseinzadeh H. 2024. Ziziphus jujuba (Jujube) in metabolic syndrome: from traditional medicine to scientific validation. — Curr. Nutr. Rep. 13(4): 845–866. https://doi.org/10.1007/s13668-024-00581-5
  27. Mesaik A. M., Poh H. W., Bin O. Y., Elawad I., Alsayed B. 2018. In vivo anti-inflammatory, anti-bacterial and anti-diarrhoeal activity of Ziziphus jujuba fruit extract. — Open Access Maced. J. Med. Sci. 6(5): 757–766. https://doi.org/10.3889/oamjms.2018.168
  28. Liu S. Y., Gu B. 2023. Three new 8,4’-type oxyneolignans from the seeds of Ziziphus jujuba Mill. and their antitumor studies. — Nat. Prod. Res. 37(9): 1573 https://doi.org/10.1080/14786419.2021.2023144
  29. Kharakoz M. F. 1997. [Medicinal plants of the Krasnodar Region]. 3rd ed. Krasnodar. 352 p. (In Russian)
  30. Stukkey K. L., Smolyanskaya P. G., Zmeeva G. I. 1965. Content of anthracene derivatives in the bark of alder buckthorn. — Rastitelnye Resursy. 1(3): 369–372. (In Russian)
  31. Lemli J. 1965. Studies in the field of drugs containing anthracene derivatives: The anthraquinones and dianthrones in Rhamnus frangula. — Lloydia. 28(1): 63–67.
  32. Lemli J., Cuveele J. 1969. Anthraquinones drugs: Identification of anthrones in alder buckthorn. — Plant. Med. Phytother. 3(4): 260–267.
  33. Leistner E., Zenk M. H. 1969. Chrysophanol (1,8-dihydroxy-3-methylanthraquinone) biosynthesis in higher plants. — J. Chem. Soc. D. 5: 210–211. https://doi.org/10.1039/C29690000210
  34. Herisset A., Boussarie M. F. 1970. Determination of antracene derivatives in the alder buckthorn (Rhamnus frangula). — Plant. Med. Phytother. 4(1): 31–38.
  35. Savonius K. 1971. The isolation of glucofrangulin A from Frangula alnus Mill. — Farm. Aikak. 80(4-5): 230–236.
  36. Savonius K. 1972. The isolation and identification of some oxidized aglycones from Frangula alnus Mill. — Farm. Aikak. 81(5-6): 85–90.
  37. Savonius K. 1975. Anthraderivatives of alder buckthorn (Frangula alnus Mill., Rhamnaceae). — Farm. Aikak. 84(2): 37–52.
  38. Kupchan S. M., Karim A. 1976. Tumor inhibitors. 114. Aloe emodin: antileukemic principle isolated from Rhamnus frangula L. — Lloydia. 39(4): 223–224.
  39. Bonati A., Forni G. 1977. Analysis by HPLC of anthraquinone drugs and relevant extracts: Rhamnus frangula L. — Fitoterapia 48(4): 159–165.
  40. Francis G., Aksnes D., Holt Ø. 1998. Assignment of the 1H and 13C NMR spectra of anthraquinone glycosides from Rhamnus frangula L. — Magn. Reson Chem. 36(10): 769–772. https://doi.org/10.1002/(SICI)1097-458X(1998100)36:10 %3C769::AID-OMR361%3E3.0.CO;2-E
  41. Palade M., Dinu M., Moise D. 2002. Botanical and phytochemical research concerning the use of Rhamnus frangula L. leaves. — Farmacia. 50(5): 90–96.
  42. Manojlovic N. T., Solujic S., Sukdolak S., Milosev M. 2005. Antifungal activity of Rubia tinctorum, Rhamnus frangula and Calophaca cerina. — Fitoterapia. 76(2): 244–246. https://doi.org/10.1016/j.fitote.2004.12.002
  43. Tschesche R., Last H., Fehlaber H.-W. 1967. Alkaloide aus Rhamnaceen, III. Frangulanin, ein Peptid-Alkaloid aus Rhamnus frangula L. — Chem. Ber. 100(12): 3937–3943. https://doi.org/10.1002/cber.19671001214
  44. Tschesche R., Last H. 1968. Alkaloide aus rhamnaceen, V franganin und frangufolin, zwei weitere peptid-alkaloide aus Rhamnus frangula L. — Tetrahedron Lett. 9(25): 2993–2998. https://doi.org/10.1016/S0040-4039(00)89630-6
  45. Pailer M., Haslinger E. 1972. Isolierung von (R)-(–)-Armepavin aus Rhamnus frangula L. — Monatsh. Chem. 103(5): 1399–1405. https://doi.org/10.1007/BF00904524
  46. Brkanac S. R., Gerić M., Gajski G., Vujčić V., Garaj-Vrhovac V., Kremer D., Domijan A. M. 2015. Toxicity and antioxidant capacity of Frangula alnus Mill. bark and its active component emodin. — Regul. Toxicol. Pharmacol. 73(3): 923–929. https://doi.org/10.1016/j.yrtph.2015.09.025
  47. Elansary H. O., Szopa A., Kubica P., Ekiert H., Al-Mana F. A., El-Shafei A. A. 2020. Polyphenols of Frangula alnus and Peganum harmala leaves and associated biological activities. — Plants. 9(9): 1086. https://doi.org/10.3390/plants9091086
  48. Vuletić S., Bekić M., Tomić S., Nikolić B., Cvetković S., Ganić T., Mitić-Ćulafić D. 2023. Could alder buckthorn (Frangula alnus Mill.) be a source of chemotherapeutics effective against hepato- and colorectal carcinoma? An in vitro study. — Mutat. Res. Genet. Toxicol. Environ. Mutagen. 892: 503706. https://doi.org/10.1016/j.mrgentox.2023.503706
  49. Tacherfiout M., Petrov P. D., Mattonai M., Ribechini E., Ribot J., Bonet M. L., Khettal B. 2018. Antihyperlipidemic effect of a Rhamnus alaternus leaf extract in Triton-induced hyperlipidemic rats and human HepG2 cells. — Biomed Pharmacother. 101: 501–509. https://doi.org/10.1016/j.biopha.2018.02.106
  50. Amtaghri S., Farid O., Lahrach N., Slaoui M., Eddouks M. 2023. Antihyperglycemic effect of Rhamnus alaternus L. aqueous extract in streptozotocin-induced diabetic rats. — Cardiovasc. Hematol. Disord. Drug Targets. 22(4): 245–255. https://doi.org/10.2174/1871529X23666230123123317
  51. Chatti I. B., Toumia I. B., Krichen Y., Maatouk M., Ghedira L. C., Krifa M. 2022. Assessment of Rhamnus alaternus leaves extract: phytochemical characterization and antimelanoma activity. — J. Med. Food. 25(9): 910–917. https://doi.org/10.1089/jmf.2020.0170
  52. Bhouri W., Sghaier M. B., Kilani S., Bouhlel I., Dijoux-Franca M.G., Ghedira K., Ghedira L. C. 2011. Evaluation of antioxidant and antigenotoxic activity of two flavonoids from Rhamnus alaternus L. (Rhamnaceae): kaempferol 3-O-β-isorhamninoside and rhamnocitrin 3-O-β-isorhamninoside. — Food Chem. Toxicol. 49(5): 1167–1173. https://doi.org/10.1016/j.fct.2011.02.011
  53. Ben Ammar R., Miyamoto T., Chekir-Ghedira L., Ghedira K., Lacaille-Dubois M. A. 2019. Isolation and identification of new anthraquinones from Rhamnus alaternus L. and evaluation of their free radical scavenging activity. — Nat. Prod. Res. 33(2): 280–286. https://doi.org/10.1080/14786419.2018.1446135
  54. Kosalec I., Kremer D., Locatelli M., Epifano F., Genovese S., Carlucci G., Randić M., Zovko Končić M. 2013. Anthraquinone profile, antioxidant and antimicrobial activity of bark extracts of Rhamnus alaternus, R. fallax, R. intermedia and R. pumila. — Food Chem. 136(2): 335–341. https://doi.org/10.1016/j.foodchem.2012.08.026
  55. Gammerman A. F., Grom I. I. 1976. [Wild medicinal plants of the USSR]. Moscow. 287 p. (In Russian)
  56. Gotsiridze A. V., Kemertelidze E. P. 1977. The content of anthraquinones in the bark of buckthorn and zoster species growing in Georgia. — Rastitelnye Resursy. 13(1): 64–68. (In Russian)
  57. Plouvier V. 1958. Sur la recherché du bornésitol chez les Rhamnacées, Borraginacées et quelques autres familles. — C. R. Acad. Sci. 247(23): 2190–2192.
  58. Karrer W. 1958. Konstitution und Vorkommen der organischen Pflanzenstoffe (exclusive Alkaloide). Basel; Stuttgart. 1207 s. https://doi.org/10.1007/978-3-0348-6808-2
  59. Shreter A. I. 1975. [Family Rhamnaceae]. — In: [Medicinal flora of the Soviet Far East]. Moscow. P. 179. (In Russian)
  60. Chen G., Li X., Saleri F., Guo M. 2016. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. — Molecules. 21(10): 1275. https://doi.org/10.3390/molecules21101275
  61. Gusakova S. D., Stepanenko G. A., Asilbekova D. T., Murdokhaev Yu. M. 1983. Lipids of some medicinal plants. — Rastitelnye Resursy. 19(4): 444–455. (In Russian)
  62. Bayat F., Motevalli Haghi A., Nateghpour M., Rahimi-Esboei B., Rahimi Foroushani A., Amani A., Farivar L., Sayyad Talaee Z., Faryabi A. 2022. Cytotoxicity and anti-Plasmodium berghei activity of emodin loaded nanoemulsion. — Iran J. Parasitol. 17(3): 339–348. https://doi.org/10.18502/ijpa.v17i3.10624
  63. Paris R.-R., Quirin M. 1960. Sur le catharticoside, hétéroside flavonique fruits du nerprun (Rhamnus cathartica L.). — C. R. Acad. Sci. 250(13): 2448–2449.
  64. Romani A., Zuccaccia C., Clementi C. 2006. An NMR and UV-visible spectroscopic study of the principal colored component of Stil de grain lake. — Dyes Pigments. 71(3): 218–223. https://doi.org/10.1016/j.dyepig.2005.07.005
  65. Rauwald H. W. 1983. A new investigation on the composition of Rhamni cathartici cortex, IV [1]. The main anthraglycosides of the stem bark of Rhamnus catharticus L.: emodin-8-O-β-gentiobioside, -glucoside and -primveroside. — Z. Naturforsch. C. 38(3-4): 170–178. https://doi.org/10.1515/znc-1983-3-403
  66. Rauwald H. W., Just H. D. 1983a. [New investigation on the constituents of buckthorn cortex. III. A new lactonic naphthalene glycoside from the cortex of Rhamnus catharticus L.]. — Arch. Pharm. 316(5): 409–412. https://doi.org/10.1002/ardp.19833160505 (In German)
  67. Rauwald H. W., Just H. D. 1983b. [New investigation on the constituents of buckthorn cortex. II. Isolation and characterization of blue fluorescing leading substances from the bark of Rhamnus catharticus L.]. — Arch. Pharm. 316(5): 399–408. https://doi.org/10.1002/ardp.19833160504 (In German)
  68. Mazon O. 1945. Laxative drugs of national origin. — Farmac. Nueva. 10: 322–325.
  69. Ligaa U., Davaasuren B., Ninjil N. 2009. Medicinal plants of Mongolia used in Western and Eastern Medicine. Moscow. 378 p.
  70. Компанцев В. А., Джумырко С. Ф., Епишева А. В. 1984. Антрахиноны и флавоноиды Rhamnus pallassii. — Химия природ. соедин. 4: 524–525 (In Russian).
  71. Kompantsev V. A., Dzhumyrko S. F., Episheva A. V. 1984. Anthraquinones and flavonoids of Rhamnus pallasii. — Chem. Nat. Compd. 20(4): 498–499. https://doi.org/10.1007/BF00574350
  72. Novruzov E., Djafarova E., Zeynalova A. 2022. Flavonoids from leaves of Rhamnus pallasii Fisch. et C. A. Mey. — Bulletin of Science and Practice. 8(11): 31–37. https://doi.org/10.33619/2414-2948/84/03 (In Russian)
  73. Sakushima A., Coşkun M., Hisada S., Nishibe S. 1983. Flavonoids from Rhamnus pallassii. — Phytochemistry. 22(7): 1677–1678. https://doi.org/10.1016/0031-9422(83)80110-1
  74. Batorova S. M., Yakovlev G. P., Aseeva T. A. 2013. [Handbook of traditional Tibetan medicinal plants]. Novosibirsk. 292 p. (In Russian)
  75. Wu Z., Gao R., Li H., Wang Y., Luo Y., Zou J., Zhao B., Chen S. 2021. New insight into the joint significance of dietary jujube polysaccharides and 6-gingerol in antioxidant and antitumor activities. — RSC Adv. 11(53): 33219–33234. https://doi.org/10.1039/d1ra03640h
  76. Zhang Y., Li H., Huang M., Chu K., Xu W., Zhang S., Que J., Chen L. 2014. Neuroprotective effects of Gualou Guizhi decoction in vivo and in vitro. — J. Ethnopharmacol. 158(A): 76–84. https://doi.org/10.1016/j.jep.2014.10.020
  77. Zhang Y., Wang H., Li H., Nan L., Xu W., Lin Y., Chu K. 2021. Gualou Guizhi Granule protects against OGD/R-induced injury by inhibiting cell pyroptosis via the PI3K/Akt signaling pathway. — Evid. Based Complement. Alternat. Med. 2021: 6613572. https://doi.org/10.1155/2021/6613572
  78. Liu X., Ke S., Wang X., Li Y., Lyu J., Liu Y., Geng Z. 2024. Interpretation of the anti-influenza active ingredients and potential mechanisms of Ge Gen Decoction based on spectrum-effect relationships and network analysis. — J. Ethnopharmacol. 319(2): 117290. https://doi.org/10.1016/j.jep.2023.117290
  79. Schroeter A. I., Panasiuk V. A. 1999. Dictionary of plant names. Koenigstein. 1033 p.
  80. Arslan L., Kaya E. 2021. Investigation of antimicrobial and antioxidant activities of Paliurus spina-christi Mill. in Kahramanmaras, Turkey. — KSÜ Tar. Doğa Derg. 24(6): 1161–1169. https://doi.org/10.18016/ksutarimdoga.vi.835763
  81. Şen А. 2018. Antioxidant and anti-inflammatory activity of fruit, leaf and branch extracts of Paliurus spina-christi P. Mill. — Marmara Pharm. J. 22(2): 328–333. https://doi.org/10.12991/mpj.2018.71
  82. Takım K. 2021. Bioactive component analysis and investigation of antidiabetic effect of Jerusalem thorn (Paliurus spina-christi) fruits in diabetic rats induced by streptozotocin. — J. Ethnopharmacol. 264: 113263. https://doi.org/10.1016/j.jep.2020.113263
  83. Ji X., Hou C., Yan Y., Shi M., Liu Y. 2020. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. — Int. J. Biol. Macromol. 149: 1008–1018. https://doi.org/10.1016/j.ijbiomac.2020.02.018
  84. Sobhani Z., Nikoofal-Sahlabadi S., Amiri M. S., Ramezani M., Emami S. A., Sahebkar A. 2020. Therapeutic effects of Ziziphus jujuba Mill. fruit in traditional and modern medicine: A review. — Med. Chem. 16(8): 1069–1088. https://doi.org/10.2174/1573406415666191031143553
  85. Bai L., Cui X., Cheng N., Cao W., Wu Y., Guo S., Zhang L., Ho C. T., Bai N. 2017. Hepatoprotective standardized EtOH-water extract of the leaves of Ziziphus jujuba. — Food Funct. 8(2): 816–822. https://doi.org/10.1039/c6fo01690a
  86. Savova M. S., Vasileva L. V., Mladenova S. G., Amirova K. M., Ferrante C., Orlando G., Wabitsch M., Georgiev M. I. 2021. Ziziphus jujuba Mill. leaf extract restrains adipogenesis by targeting PI3K/AKT signaling pathway. — Biomed. Pharmacother. 141: 111934. https://doi.org/10.1016/j.biopha.2021.111934
  87. Hong S., Kim Y., Sung J., Lee H., Heo H., Jeong H. S., Lee J. 2020. Jujube (Ziziphus jujuba Mill.) protects hepatocytes against alcohol-induced damage through Nrf2 activation. — Evid. Based. Complement. Alternat. Med. 2020: 6684331. https://doi.org/10.1155/2020/6684331
  88. Lin G., Li W., Hong W., Zhu D., Hu H., Fu J., Gao Y., Chen S., Chai D., Zeng J. Z. 2024. Spinosin inhibits activated hepatic stellate cell to attenuate liver fibrosis by targeting Nur77/ASK1/p38 MAPK signaling pathway. — Eur. J. Pharmacol. 966: 176270. https://doi.org/10.1016/j.ejphar.2023.176270
  89. Kandeda A. K., Nguedia D., Ayissi E. R., Kouamouo J., Dimo T. 2021. Ziziphus jujuba (Rhamnaceae) alleviates working memory impairment and restores neurochemical alterations in the prefrontal cortex of D-galactose-treated rats. — Evid. Based Complement. Alternat. Med. 2021: 6610864. https://doi.org/10.1155/2021/6610864
  90. Zhu Y., Huang J., Shen T., Yue R. 2022. Mechanism of jujube (Ziziphus jujuba Mill.) fruit in the appetite regulation based on network pharmacology and molecular docking method. — Contrast Media Mol. Imaging. 2022: 5070086. https://doi.org/10.1155/2022/5070086
  91. Annepaka E. R., Rangasmy M., Panakala S., Sayana S. B. 2024. Investigation of the cognitive activity between the leaf extracts of Eclipta alba and Ziziphus jujuba in diabetic animal models. — Cureus. 16(3): e55400. https://doi.org/10.7759/cureus.55400
  92. Yang Y. J., Kim M. J., Lee H. J., Lee W. Y., Yang J. H., Kim H. H., Shim M. S., Heo J. W., Son J. D., Kim W. H., Kim G. S., Lee H. J., Kim Y. W., Kim K. Y., Park K. I. 2024. Ziziphus jujuba Miller ethanol extract restores disrupted intestinal barrier function via tight junction recovery and reduces inflammation. — Antioxidants. 13(5): 575. https://doi.org/10.3390/antiox13050575
  93. Kawabata K., Kitamura K., Irie K., Naruse S., Matsuura T., Uemae T., Taira S., Ohigashi H., Murakami S., Takahashi M., Kaido Y., Kawakami B. 2017. Triterpenoids isolated from Ziziphus jujuba enhance glucose uptake activity in skeletal muscle cells. — J. Nutr. Sci. Vitaminol. (Tokyo). 63(3): 193–199. https://doi.org/10.3177/jnsv.63.193
  94. Yan M., Wang Y., Watharkar R. B., Pu Y., Wu C., Lin M., Lu D., Liu M., Bao J., Xia Y. 2022. Physicochemical and antioxidant activity of fruit harvested from eight jujube (Ziziphus jujuba Mill.) cultivars at different development stages. — Sci. Rep. 12: 2272. https://doi.org/10.1038/s41598-022-06313-5
  95. Sapkota G., Delgado E., Van Leeuwen D., Holguin F. O., Flores N., Yao S. 2023. Preservation of phenols, antioxidant activity, and cyclic adenosine monophosphate in jujube (Ziziphus jujuba Mill.) fruits with different drying methods. — Plants. 12(9): 1804. https://doi.org/10.3390/plants12091804
  96. Goswami P., Banerjee R., Mukherjee A. 2019. Potential antigenotoxicity assessment of Ziziphus jujuba fruit. — Heliyon. 5(5): e01768. https://doi.org/10.1016/j.heliyon.2019.e01768
  97. Khoramjouy M., Bayanati M., Noori S., Faizi M., Zarghi A. 2023. Effects of Ziziphus jujuba extract alone and combined with Boswellia serrata extract on monosodium iodoacetate model of osteoarthritis in mice. — Iran J. Pharm. Res. 21(1): e134338. https://doi.org/10.5812/ijpr-134338
  98. Shreter A. I., Muravjeva D. A., Pakaln D. A., Efimova F. V. 1979. Lekarstvennaya flora Kavkaza [Medicinal flora of the Caucasus]. Moscow. 368 p. (In Russian)
  99. Bacha A. B., Jemel I., Moubayed N. M.S., Abdelmalek I. B. 2017. Purification and characterization of a newly serine protease inhibitor from Rhamnus frangula with potential for use as therapeutic drug. — 3 Biotech. 7(2): 148. https://doi.org/10.1007/s13205-017-0764-z
  100. Bacha A. B., Jemel I., Bhat R. S., Onizi M. A. 2018. Inhibitory effects of various solvent extracts from Rhamnus frangula leaves on some inflammatory and metabolic enzymes. — Cell. Mol. Biol. 64(13): 55–62. https://doi.org/10.14715/cmb/2018.64.13.11
  101. Chatti I. B., Krichen Y., Maatouk M., Lahmar A., Mazgar S. G., Kammoun R., Skhiri S. S., Ghedira L. C., Krifa M. 2022. Evaluation of anticancer potential of flavones from Rhamnus alaternus against B16F10 melanoma cells. — Nutr. Cancer. 74(6): 2265–2275. https://doi.org/10.1080/01635581.2021.2004171
  102. Boussahel S., Speciale A., Dahamna S., Amar Y., Bonaccorsi I., Cacciola F., Cimino F., Donato P., Ferlazzo G., Harzallah D., Cristani M. 2015. Flavonoid profile, antioxidant and cytotoxic activity of different extracts from Algerian Rhamnus alaternus L. bark. — Pharmacogn Mag. 11(42s): 102–109. https://doi.org/10.4103/0973-1296.157707
  103. Zeouk I., Ouedrhiri W., Sifaoui I., Bazzocchi I. L., Piñero J. E., Jiménez I. A., Lorenzo-Morales J., Bekhti K. 2021. Bioguided Isolation of active compounds from Rhamnus alaternus against methicillin-resistant Staphylococcus aureus (MRSA) and Panton-Valentine leucocidin positive strains (MSSA-PVL). — Molecules. 26(14): 4352. https://doi.org/10.3390/molecules26144352
  104. Batorova S. M., Ubasheev L. S. 1991. [Medicinal plants of Transbaikalia used in Tibetan medicine for the treatment of wounds]. — In: [Vegetation resources of Transbaikalia and their use]. Ulan-Ude: BNCz SO AN SSSR. 181 p. (In Russian)
  105. Kim J. H., Kim A. R., Kim H. S., Kim H. W., Park Y. H., You J. S., Park Y. M., Her E., Kim H. S., Kim Y. M., Choi W. S. 2015. Rhamnus davurica leaf extract inhibits Fyn activation by antigen in mast cells for anti-allergic activity. — BMC Complement. Altern. Med. 15: 80. https://doi.org/10.1186/s12906-015-0607-6
  106. Chen G., Guo M. 2017. Screening for natural inhibitors of topoisomerases I from Rhamnus davurica by affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry. — Front. Plant Sci. 8: 1521. https://doi.org/10.3389/fpls.2017.01521
  107. Chen G., Wu J., Li N., Guo M. 2018. Screening for anti-proliferative and anti-inflammatory components from Rhamnus davurica Pall. using bio-affinity ultrafiltration with multiple drug targets. — Anal. Bioanal. Chem. 410(15): 3587–3595. https://doi.org/10.1007/s00216-018-0953-6
  108. Kotukhov Yu. A., Danilova A. N., Kubentaev S. A. 2015. List of medicinal plants of the Kazakhstan Altai. Ridder. 156 p. (In Russian)
  109. Kurkin V. A., Shmygareva A. A., Sankov A. N. 2015. Сomparison of laxative effect of preparations from Frangula alnus bark and Rhamnus cathartica fruits (Rhamnaceae). — Rastitelnye Resursy. 51(2): 207–212. https://www.elibrary.ru/tporxl (In Russian)
  110. Chabra A., Rahimi-Esboei B., Habibi E., Monadi T., Azadbakht M., Elmi T., Valian H. K., Akhtari J., Fakhar M., Naghshvar F. 2019. Effects of some natural products from fungal and herbal sources on Giardia lamblia in vivo. — Parasitology. 146(9): 1188–1198. https://doi.org/10.1017/S0031182019000325
  111. Gammerman A. F., Damirov I. A., Karryev M. O., Yakovlev G. P. 1970. [Medicinal plants of scientific medicine of the USSR, not included in the pharmacopoeia]. Ashgabat. 185 p. (In Russian)
  112. Budantsev A. L., Kharitonova N. P. 1999. [Resource studies of medicinal plants: Training guide for the students of the Pharmaceutical Faculty]. St. Petersburg. 87 p. (In Russian)
  113. Fetisov A. A., Dmitriev S. V. 1991. Stocks of wild medicinal plants in the southern regions of the Kaluga region. — Rastitelnye Resursy. 27(2): 27–31. (In Russian)
  114. Fetisov A. A., Sokolsky I. G., Kurochkin E. I. 1991. Stocks of wild medicinal plants in the central regions of the Kuibyshev region. — Rastitelnye Resursy. 27(4): 28–34. (In Russian)
  115. Fetisov A. A., Sokolsky I. N., Garbuzova V. M. 1990. Stocks of wild medicinal plants in the northern, central and southwestern regions of the Moscow region. — Rastitelnye Resursy. 26(1): 41–46. (In Russian)
  116. Oleshko G. I., Prosovsky M. A., Belonogova V. D. 1987. Stocks of raw materials of wild medicinal plants in the eastern and south-eastern regions of the Perm region. — Rastitelnye Resursy. 23(3): 319–325. (In Russian)
  117. Gammerman A. F., Kuznetzova M. A. 1971. The distribution of medicinal plants in the phyto-geographical districts of the Yaroslavl Region. — Rastitelnye Resursy. 7(1): 3–9. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».