Current state оf Pinus Sylvestris (Pinaceae) stands under reduced aerotechnogenic load at the Kola Peninsula
- Authors: Lyanguzova I.V.1, Katjutin P.N.1,2
-
Affiliations:
- V.L. Komarov Botanical Institute of RAS
- Saint-Petersburg State Forest Technical University
- Issue: Vol 60, No 4 (2024)
- Pages: 112-129
- Section: АНТРОПОГЕННОЕ ВОЗДЕЙСТВИЕ НА РАСТИТЕЛЬНЫЕ РЕСУРСЫ
- URL: https://journals.rcsi.science/0033-9946/article/view/280809
- DOI: https://doi.org/10.31857/S0033994624040071
- EDN: https://elibrary.ru/PQSUEG
- ID: 280809
Cite item
Abstract
Against the backdrop of reduced atmospheric emissions from a large copper-nickel combine (Murmansk region) recorded over the last 20 years, the size and vitality structures of Pinus sylvestris L. stands in middle-aged pine forests in the background area, buffer and impact zones were studied, and the current content of Ni and Cu in forest litter was estimated. It was found that the reduction of the aerotechnogenic load did not lead to a decrease in the level of pollution of the organogenic horizon of Al-Fe-humus podzols by heavy metals; in the impact zone their content is still more than 100 times higher than background concentrations. Distributions of all morphometric parameters of pine stands regardless of the level of aerotechnogenic load are characterised by positive asymmetry, which indicates the predominance of small-sized individuals in pine stands. The vitality spectra of background pine stands are dominated by weakened and severely weakened individuals; with increasing levels of heavy metal pollution of habitats, the vital state of stands deteriorates, and the absolute maximum in vitality spectra shifts to the share of desiccated individuals.
About the authors
I. V. Lyanguzova
V.L. Komarov Botanical Institute of RAS
Author for correspondence.
Email: ILyanguzova@binran.ru
Russian Federation, Saint Petersburg
P. N. Katjutin
V.L. Komarov Botanical Institute of RAS; Saint-Petersburg State Forest Technical University
Email: ILyanguzova@binran.ru
Russian Federation, Saint Petersburg; Saint Petersburg
References
- Pacyna J. M., Pacyna E. G., Aas W. 2009. Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. — Atmos. Environ. 43(1): 117–127. https://doi.org/10.1016/j.atmosenv.2008.09.066
- Pacyna E. G., Pacyna J. M., Fudala J., Strzelecka-Jastrzab E., Hlawiczka S., Panasiuk D., Nitter S., Pregger T., Pfeiffer H., Friedrich R. 2007. Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. — Atmos. Environ. 41(38): 8557–8566. https://doi.org/10.1016/j.atmosenv.2007.07.040
- Fioletov V. E., McLinden C. A., Krotkov N., Li C., Joiner J., Theys N., Carn S., Moran M. D. 2016. A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument. — Atmos. Chem. Phys. 16(18): 11497–11519. https://doi.org/10.5194/acp-16-11497-2016
- Vorobeichik E. L. 2022. Natural recovery of terrestrial ecosystems after the cessation of industrial pollution: 1. A state of the art review. — Rus. J. Ecol. 53(1): 1–39. https://doi.org/10.1134/S1067413622010118
- Trubina M. R., Dyachenko A. P. 2020. Current state of forest moss communities after reduction of emissions from the Middle-Ural Copper Smelter. — Povolzhskiy Journal of Ecology. 4: 477–491. https://doi.org/10.35885/1684-7318-2020-4-477-491
- Trubina M. R., Mikhailova I. N., Dyachenko A. P. 2022. Dynamics of communities of cryptogamic organisms on dead wood after reduction of emissions from a copper smelter. — Rus. J. Ecol. 53(6): 437–447. https://doi.org/10.1134/s1067413622060169
- Mikhailova I. N. 2020. Dynamics of epiphytic lichen communities in the initial period after reduction of emissions from a copper smelter. — Rus. J. Ecol. 51(1): 38–45. https://doi.org/10.1134/S1067413620010075
- Mikhailova I. N. 2022. Dynamics of distribution boundaries of epiphytic macrolichens after reduction of emissions from a copper smelter. — Rus. J. Ecol. 53(5): 335–346. https://doi.org/10.1134/s1067413622050083
- Mukhacheva S. V. 2021. Long-term dynamics of small mammal communities in the period of reduction of copper smelter emissions: 1. Composition, abundance and diversity. — Rus. J. Ecol. 52(1): 84–93. https://doi.org/10.1134/S1067413621010100
- Mukhacheva S. V. 2022. Long-term dynamics of heavy metal concentrations in the food and liver of shrews (genus. sorex) during high and reduced emissions periods from the copper smelter. — Rus. J. Ecol. 53(5): 381–395. https://doi.org/10.1134/s1067413622050095
- Barkan V. Sh., Lyanguzova I. V. 2018. Concentration of heavy metals in dominant moss species as an indicator of aerial technogenic load. — Rus. J. Ecol. 49(2): 128–134. https://doi.org/10.1134/S1067413618020030
- Nesterkov A. V. 2022. Recovery signs in grass-stand invertebrate communities after a decrease in copper smelting emissions. — Rus. J. Ecol. 53(6): 553–564. https://doi.org/10.1134/s1067413622060133
- Urbanavichus G. P., Borovichev E. A., Ershov V. V. 2021. Cryptogamic organisms as pioneers of the Northern taiga recovery affected under the conditions of lowered industrial air pollution. — Russian Journal of Forest Science. 2: 195–207. https://doi.org/10.31857/S0024114821020108
- Bel’skii I. A., Lyakhov A. G. 2021. Dynamics of the community of hole-nesting birds upon reduction of industrial emissions (the example of the Middle-Ural Copper Smelter). — Rus. J. Ecol. 52(4): 296–306. https://doi.org/10.1134/S1067413621040044
- Belskaya E. A. 2018. Dynamics of trophic activity of leaf-eating insects on birch during reduction of emissions from Middle-Ural Copper Smelter. — Rus. J. Ecol. 49(1): 87–92. https://doi.org/10.1134/S1067413617060029
- Belskaya E. A., Zamshina G. A. 2023. Heavy metals in birch leaves during the reduction of emissions from a large copper smelter. — Rus. J. Ecol. 54(6): 509–515. https://doi.org/10.1134/s1067413623060115
- Chernenkova T. V., Kabirov R. R., Basova E. V. 2011. Regeneration successions of Northern taiga spruce forests under reduction of aerotechnogenic impact. — Contemp. Probl. Ecol. 4(7): 742–757. https://doi.org/10.1134/S199542551107006X
- [Dynamics of forest communities in the Nord-West of Russia]. 2009. St. Petersburg. 276 p. (In Russian)
- Sukhareva T. A., Lukina N. V. 2014. Mineral composition of assimilative organs of conifers after reduction of atmospheric pollution in the Kola peninsula. — Rus. J. Ecol. 45(2): 95–102. https://doi.org/10.1134/S1067413614020088
- Lyanguzova I. V. 2017. Dynamic trends of heavy metal contents in plants and soil under different industrial air pollution regimes. — Rus. J. Ecol. 48(4): 311–320. https://doi.org/10.1134/S1067413617040117
- Vorobeichik E. L., Trubina M. R., Khantemirova E. V., Bergman I. E. 2014. Long-term dynamic of forest vegetation after reduction of copper smelter emissions. — Rus. J. Ecol. 45(6): 498–507. https://doi.org/10.1134/S1067413614060150
- Vorobeichik E. L., Kaigorodova S. Y. 2017. Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission. — Eurasian Soil Sci. 50(8): 977–990. https://doi.org/10.1134/S1064229317080130
- Lyanguzova I. V., Goltvirt D. K., Fadeeva I. K. 2016. Spatiotemporal dynamics of the pollution of Al-Fe-humus podzols in the impact zone of a nonferrous metallurgical plant. — Eurasian Soil Science. 49(10): 1189–1203. https://doi.org/10.1134/S1064229316100094
- Kabała C., Chodak T., Szerszen L. 2008. Influence of land use pattern on changes in copper content in soils around a copper smelter, based on a 34-year monitoring cycle. — Žemės Ūkio Mokslai. 15(3): 8–12.
- Pozolotina V. N., Lebedev V. A., Antonova E. V., Grigo’iev A. A., Shalaumova Yu. V., Tarasov O.V. 2021. Current state of forest tree stands in the East-Ural radioactive trace area closet to Kyshtym accident epicenter. — Russ. J. Ecol. 52(6): 578-590. https://doi.org/10.1134/S106741362201009X
- Nesterkov A. V., Nesterkova D. V. 2023. The response of the invertebrate communities of steppe and floodplain meadows to emissions from the Karabash copper smelter. — Russ. J. Ecol. 54(6): 542–552. https://doi.org/10.1134/s106741362306005x
- Poznyakov V. Ya. 1999. Severonickel. M. 432 p. (In Russian)
- Classification and diagnostic of soils of Russia. 2004. Smolensk. 342 p. (In Russian)
- Pereverzev V. N. 2011. Pochvoobrazovanit v lesnoi zone Kol’skogo poluostrova. — Vestnik Kolskogo Nauchnogo Tsentra RAN. 2: 74–82. https://www.elibrary.ru/pbjxkl (In Russian)
- Methods for forest community studies. 2002. Saint-Petersburg. 240 p. (In Russian)
- Katyutin P. N., Gorshkov V. V. 2020. Vitality, growth speed and aboveground biomass of Pinus sylvestris (Pinaceae) in middle-aged north taiga forests. — Rastitelnye resursy. 56(2): 99–111. https://doi.org/10.31857/S0033994620020065 (In Russian)
- Evdokimova G. A., Kalabin G. V., Mozgova N. P. 2011. Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel Enterprise. — Eurasian Soil Sci. 44(2): 237–244. https://doi.org/10.1134/S1064229311020037
- Evdokimova G. A., Mozgova N. P., Korneikova M. V. 2014. The content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganikel plant. — Eurasian Soil Science. 47(5): 504–510. https://doi.org/10.1134/S1064229314050044
- Kashulina G. M. 2018. Monitoring of soil contamination by heavy metals in the impact zone of copper-nickel smelter on the Kola peninsula. — Eurasian Soil Science. 51(4): 467–478. https://doi.org/10.1134/S1064229318040063
- Barkan V. Sh., Lyanguzova I. V. 2018. Changes in the degree of contamination of organic horizons of Al-Fe-humus podzols upon a decrease in aerotechnogenic loads, the Kola Peninsula. — Eurasian Soil Sci. 51(3): 327–335. https://doi.org/10.1134/S106422931803002X
- Gorshkov V. V., Stavrova N. I., Katоutin P. N., Tumakova E. A. 2013. Types of size and vitality structure of Pinus sylvestris (Pinaceae) coenopopulations in Northern taiga (Kola Peninsula). — Rastitelnye resursy. 49(4): 512–531. https://www.elibrary.ru/rcfevf (In Russian)
- Stavrova N. I., Gorshkov V. V., Katyutin P. N. 2016. Structure formation of forest tree species coenopopulations during post-fire recovery of northern taiga forest. — Transactions of Karelian Research Centre of Russian Academy of Science. 3: 10–28. https://doi.org/10.17076/bg187 (In Russian)
- Stavrova N. I., Gorshkov V. V., Katyutin P. N. 2021. Variety of size structure of middle-aged pine (Pinus sylvestris L.) stands in the Northern taiga (Murmansk region). — Transactions of the Kоla Science Centre. Applied Ecology of the North. Series 9. 12(6): 51–56. https://doi.org/10.37614/2307-5252.2021.6.12.9.006
- Stavrova N. I., Gorshkov V. V., Katyutin P. N. 2023. Vitality structure of the middle-aged northern taiga pine forest stands. — Lesovedenie. 5: 471–485. https://doi.org/10.31857/S0024114823040113 (In Russian)
- Yarmishko V. T., Ignateva O. V. 2019. Multiyear impact monitoring of pine forests in the central part of the Kola Peninsula. — Biology Bulletin. 46(6): 636–645. https://doi.org/10.1134/S106235901906013X
- Yarmishko V. T., Ignat'eva O. V. 2021. Communities of Pinus sylvestris L. in the technogenic environment in the European North of Russia: structure, features of growth, condition. — Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.). 3: 44–55. https://doi.org/10.15372/SJFS20210305 (In Russian)
- Gorshkov V. V., Stavrova N. I., Katjutin P. N., Lyanguzov A. Y. 2021. Radial growth of Scots Pine (Pinus sylvestris L.) in lichen pine forests and woodlands of the northern taiga. — Biol. Bull. 2: 200–210. https://doi.org/10.1134/S1062359021020059
- Katjutin P. N., Stavrova N. I., Gorshkov V. V., Lyanguzov A. Yu., Bakkal I. Ju., Mikhailov S. A. 2020. Radial growth of trees differing in their vitality in the middle-aged Scots pine forests in the Kola peninsula. — Silva Fennica. 54(3): 10263. https://doi.org/10.14214/sf.10263
- Stavrova N. I., Gorshkov V. V., Katjutin P. N., Bakkal I. Ju. 2020. The structure of Northern Siberian spruce–Scots pine forests at different stages of post-fire succession. — Forests. 11(5): 558. https://doi.org/10.3390/f11050558
- Fedorkov A. 2014. Vitality and height growth of two Larix species and provenances in a field trial located in north-west Russia. — Silva Fennica. 48(1): 1053. https://doi.org/10.14214/sf.1053
- Demidko D. A. 2006. Vitality structure of undisturbed Siberian stone pine stands in the subalpine belt and at the timberline in the Mountain Altai. — Russ. J. Ecology. 37(5): 359–362. https://doi.org/10.1134/S1067413606050109
- Demidko D. A. 2011. The state of Siberian pine forests in Northeastern Altai and methods for its assessment. — Lesovedenie. 1: 19–27. (In Russian) http://lesovedenie.ru/index.php/forestry/article/view/280
- Bebiya S. M. 2000. [Tree differentiation in the forest, their classification and determination of stand vitality]. — Lesovedenie. 4: 35–43. (In Russian)
- Torlopova N. V., Ilchukov S. V. 2003. Vital state of native pine forests at the Pechora-Ilych biosphere reserve. — Lesovedenie. 3: 34–40. https://www.elibrary.ru/onouud (In Russian)
- Lyanguzova I. V., Katjutin P. N. 2023. Effects of high and low aerotechnogenic emissions of heavy metals on wild plants. — Forests. 14(8): 1650. https://doi.org/10.3390/f14081650
- Katjutin P. N., Lyanguzova I. V. 2023. Radial growth of Pinus sylvestris L. under industrial pollution on the Kola Peninsula. — Lesotekhnicheskii Zhurnal. 13(4–2): 76–94. https://doi.org/10.34220/issn.2222-7962/2023.4/18 (In Russian)
Supplementary files
