Features of Seed Reproduction of Saposhnikovia divaricata (Apiaceae)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

AbstractSaposhnikovia divaricata (Turcz. ex Ledeb.) Schischk. (Apiaceae) is a useful medicinal plant, which contain a number of substances with a wide range of pharmacological activity; chromones, in particular, are found in the roots. For this reason, plants are heavily harvested from the wild, resulting in the population low density. S. divaricata is a taproot perennial monocarpic that reproduces by seeds only. The introduction of the species, the study of seed productivity and seed reproduction is a vital task for the development of industrial plant cultivation and the restoration of natural populations. The purpose of this work is to study seed production and biology of seed propagation. The generative shoot of S. divaricata is a synflorescence (a panicle of double umbels) with a floral unit being a double umbel. Plants from natural habitat and cultivated ones were studied. A comparative analysis of the seed production of double umbels, depending on their position on the rachis was carried out. The proportion of seed set (seed number/ovule number) and fruit set (fruit number/flower number) in a simple umbel, the potential and real seed productivity of a simple umbel, double umbel, and an individual plant were determined. Fruit of S. divaricata is a cremocarp consisting of two single-seeded mericarps. The seeds have a thin spermoderm, so they were stored and germinated with the pericarp. Seeds (mericarps) for germination were collected from natural populations and cultivated plants considering their position on the rachis, and stored for eight months under laboratory conditions (+23–25 °C). The results of the experiment included data on the duration of the period from the beginning of the experiment to the seed germination, the duration of the germination period (from the beginning of germination), laboratory germination of seeds (%), germination energy (%), rate of germination energy (%). All cultivated plants were monocarpic. The diameter of the synflorescence reaches 124 cm; on average, about 70 double umbels with fruits are formed on it. It was found that in introduced plants, seeds from the branches of the third order make up more than 50% of the real seed production, and from the second and fourth order branches – 21 and 26%, respectively. In natural populations, seeds from the fourth order branches account for 45% of the real seed production, of the third – 30%, of the 2nd – 15%. In the introduced plants, the real seed production of the second generation was about 6000 seeds per individual, which is higher than that of plants in natural populations, where the seed set is 65%. The seeds exhibit non-deep dormancy, and the period before germination does not exceed 10 days. Seed germination is dynamic; more than 50% of the germinated seeds have sprouted within seven days. Laboratory germination was higher in the seeds from the natural population, than from the introduced plants. The highest laboratory germination in introduced plants was found in seeds from double umbels of the second or third order branches – 72–73%, and from the natural populations – in seeds from the shoots of the third or fourth order branches – more than 90%.

Sobre autores

T. Elisafenko

Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Science

Autor responsável pela correspondência
Email: tatvelisa@mail.ru
Russian Federation, Novosibirsk

P. Yugrina

Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Science

Email: tatvelisa@mail.ru
Russian Federation, Novosibirsk

B. Zhigmitcyrenova

Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Science; Baikal Institute of Nature Management Siberian branch of the Russian Academy of sciences

Email: tatvelisa@mail.ru
Russian Federation, Novosibirsk; Russian Federation, Republic of Buryatia, Ulan-Ude

M. Kazakov

Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Science; Baikal Institute of Nature Management Siberian branch of the Russian Academy of sciences

Email: tatvelisa@mail.ru
Russian Federation, Novosibirsk; Russian Federation, Republic of Buryatia, Ulan-Ude

V. Taraskin

Baikal Institute of Nature Management Siberian branch of the Russian Academy of sciences

Email: tatvelisa@mail.ru
Russian Federation, Republic of Buryatia, Ulan-Ude

Bibliografia

  1. Yang M., Wang C., Wang W., Xu J.P., Wang J., Zhang C.H., Li M. 2020. Saposhnikovia divaricata – An ethnopharmacological, phytochemical and pharmacological review. – Chin. J. Integr. Med. 26(11): 873–880. https://doi.org/10.1007/s11655-020-3091-x
  2. Urbagarova B.M., Shults E.E., Taraskin V.V., Radnaeva L.D., Petrova T.N., Rybalova T.V., Frolova T.S., Pokrovskii A.G., Ganbaatar J. 2020. Chromones and coumarins from Saposhnikovia divaricata (Turcz.) Schischk. growing in Buryatia and Mongolia and their cytotoxicity. – J. Ethnopharmacol. 261: 112517. https://doi.org/10.1016/j.jep.2019.112517
  3. Sun J.B., Gao Y.G., Zang P., Yang H., Zhang L.X. 2013. Mineral elements in root of wild Saposhnikovia divaricata and its rhizosphere soil. – Biol. Trace Elem. Res. 153: 363–370. https://doi.org/10.1007/s12011-013-9684-x
  4. Cui Z. 2014. The use of traditional Chinese medicinal plant fang feng and the application of its cultivation and planting technology. – Heilongjiang Med. J. 27(4): 817–821. http://caod.oriprobe.com/articles/42538933/zhong_yao_cai_fang_feng_de_yong_tu_he_qi_zai_pei_z.htm
  5. Ahn Y.S., An T.J., Hur M., Yun H.J., Park C.B. 2012. Study for the improvement of seed germination rate on Angelica dahurica, Saposhnikovia divaricata and Bupleurum falcatum. – Korean Soc. Med. Crop Sci. 2012.05а: 25–26. https://koreascience.kr/article/CFKO201232164230219.pdf
  6. Kim Y.G., Han S.H., Lee S.H., Kang Y.G., Ahn Y.S., Park C.B. 2010. The study on vegetative propagation of Saposhnikovia divaricata. – Korean Soc. Med. Crop Sci. 2010.10a: 173–174. https://koreascience.kr/article/CFKO201032164227481.pdf
  7. Heuberger H., Bauer R., Friedl F., Heubl G., Hummelsberger J., Nögel R., Seidenberger P., Torres-Londoño. 2010. Cultivation and breeding of Chinese medicinal plants in Germany. – Planta Med. 76(17): 1956–1962. PMID: 21077027. https://doi.org/10.1055/s-0030-1250528
  8. Ishizuka Y., Hayashi K., Moriya A. 1998. Studies on the cultivation of Saposhnikovia divaricata (Turcz.) Schischkin (II) seasonal variation of root growth, methanol extract and constituent contents. – J. Nat. Med. 52(2): 151–155.
  9. Morino C., Morita Y., Minami K., Nishidono Y., Nakashima Y., Ozawa R., Takabayashi J., Ono N., Kanaya S., Tamura T., Tezuka Y., Tanaka K. 2018. Oviposition inhibitor in umbelliferous medicinal plants for the common yellow swallowtail (Papilio machaon). – J. Nat. Med. 72(1): 161–165. https://doi.org/10.1007/s11418-017-1124-3
  10. Nishihara M., Nukui K., Osumi Y., Shiota H. 2018. Quality evaluation of Saposhnikoviae Radix (differences between wild-type and cultivated products). – J. Pharm. Soc. Jpn. 138(4): 571–579. PMID: 29386422. https://doi.org/10.1248/yakushi.17-00208
  11. Fuchino H., Murase S., Hishida A., Kawahara N. 2021. Simultaneous UHPLC/MS quantitative analysis and comparison of Saposhnikoviae radix constituents in cultivated, wild and commercial products. – J. Nat. Med. 75(3): 499–519. https://doi.org/10.1007/s11418-021-01486-1
  12. Nishidono Y. Niwa K., Kitajima A., Watanabe S., Tezuka Y., Arita M., Takabayashi J., Tanaka K. 2021. α-Linolenic acid in Papilio machaon larvae regurgitant induces a defensive response in Apiaceae. – Phitochemistry. 188: 112796. https://doi.org/10.1016/j.phytochem.2021.112796
  13. Xu Y.H., Huang Z.J., Liu S.L., Yang H., Wang C. 2016. A new Saposhnikovia divaricata cultivar “Guanfangfeng 1”. – Acta Hortic. Sin. 43(6): 1221–1222. https://www.ahs.ac.cn/EN/Y2016/V43/I6/1221
  14. Li L., Gui Y., Wang J., Zong X., Zhang H., Liu Ch.M. 2012. Identification of chromones in the seeds extract of Saposhnikovia divaricata by liquid chromatography-electrospray ionization mass spectrometry. – Lat. Am. J. Pharm. 31(2): 336–339. http://www.latamjpharm.org/resumenes/31/2/LAJOP_31_2_2_7.pdf
  15. Li L., Gui Y., Wang J., Zhang H., Zong X., Liu Ch. M. 2012. Preparative separation of hyperoside of seeds extract of Saposhnikovia divaricata by high performance counter-current chromatography. – J. Med. Plants Res. 6(5): 884–887. https://doi.org/10.5897/JMPR11.1528
  16. Korsun O.V. 2018. [Transboundary demand poses a threat to the plants of the Daurian steppes]. – Steppe Bulletin. 51–52: 49–51. (In Russian). http://savesteppe.org/ru/archives/13568
  17. Banshchikova E.A., Vakhnina I.L., Zhelibo T.V. 2020. Saposhnikovia divaricata (Turcz.) Schischkin in the steppes of South-Eastern Transbaikalia. – Problems of Botany of South Siberia and Mongolia. 19(1): 87–92. (In Russian) https://doi.org/10.14258/pbssm.2020018
  18. Makarov V.P., Solodukhina M. A., Malykh O.F., Mikheeva N.Yu., Banshchikova E.A., Larin V.S., Bronnikov V.V., Zhelibo T.V. 2022. Elemental content of roots of Saposhnikovia divaricata (Apiaceae) in the Trans-Baikal Territory. – Rastitelnye resursy. 58(4): 402–416. (In Russian) https://elibrary.ru/item.asp?id=49937840
  19. Shishmarev V.M., Shishmareva T.M., Aseeva T.A. 2018. [Evolution of medicinal plant growing in Baikal natural area]. Ulan-Ude. 152 p. (In Russian)
  20. Polovinkina S.V. 2022. Morphological features and productivity of Saposhnikovia divaricata (Turcz.) Schischk. in the conditions of the Irkutsk Region. – In: [Climate, ecology, agriculture of Eurasia: Proc. of the XI Intern. Sci. and Pract. Conf.]. Molodezhny. P. 67–74. (In Russian) https://elibrary.ru/item.asp?id=49181280&selid=49181472
  21. Tsitsilin A.N. 2022. The introduction of the Saposhnikovia divaricata (Turcz.) Schischk. in the VILAR Botanical garden. – In.: [Contemporary problems of introduction and conservation of plant biodiversity: Proc. of All-Russian. Sci. Conf.]. Voronezh. P. 118–122. (In Russian) https://doi.org/10.17308/978-5-907283-86-2-2022-121-127
  22. Zubova K.A. 2020. Cultivation and use of medicinal plants of the South Siberian Botanical Garden. – In: [Young scientists in solving contemporary problems of science: Proc. of the X Int. Sci. and Pract. Conf.]. Vladikavkaz. P. 69–71. (In Russian) https://elibrary.ru/item.asp?id=45689421
  23. Zubova K.A. 2021. [Natural resources of the South Siberian Botanical Garden]. – In: [The real estate cadastre and monitoring of natural resources: Proc. of the 6th Int. Scientific-and Tech. Internet Conf.]. Tula. P. 142–144. (In Russian) http://kadastr.org/files/kadastr-2021.pdf
  24. Elisafenko Т.V., Korolyuk E.А., Yugrina P.N., Urbagarova B.М., Taraskin V.V. 2021. Results of the primary introduction of Saposhnikovia divaricata (Turcz.) Schischk. in the Central siberian botanical garden SB RAS. – Flora and Vegetation of Asian Russia. 14(4): 293–302. (In Russian) https://doi.org/10.15372/RMAR20210404
  25. Yi S., Lu H., Wang W., Wang G., Xu T., Li M., Gu F., Chen C., Han B., Liu D. 2022. The chloroplast genome of wild Saposhnikovia divaricata: Genomic features, comparative analysis, and phylogenetic relationships. – Genes. 13(5): 931. https://doi.org/10.3390/genes13050931
  26. Chen X. 2007. Study on tissue culture of windbreak and its establishment of root system. Mishan. https://cdmd.cnki.com.cn/Article/CDMD-10223-2007214515.htm
  27. Yugrina P., Urbagarova B., Elisafenko T. 2021. Morphological features of fruits and seeds of Saposhnikovia divaricata (Apiaceae). – In: Northern Asia Plant Diversity: Current Trends in Research and Conservation: BIO Web of Conferences. 38: 00141. https://doi.org/10.1051/bioconf/20213800141
  28. Downie S.R., Spalik K., Katz-Downie D.S., Reduron J.P. 2010. Major clades within Apiaceae subfamily Apioideae as inferred by phylogenetic analysis of nrDNA ITS sequences. – Plant Divers. Evo. 128(1–2): 111–136. https://doi.org/10.1127/1869-6155/2010/0128-0005
  29. Malyshev L.I., Peshkova G.A. 1984. [Features and origin of the flora of Siberia (Cisbaikalia and Transbaikalia)]. Novosibirsk. 264 p. (In Russian)
  30. Pimenov M.G. 1996. [Family Apiaceae, or Umbelliferae]. – In: [Flora of Siberia.] Vol. 10. Novosibirsk. P. 123–194. (In Russian)
  31. Zhukov V.M. 1960. [Climate of the Buryat ASSR]. Ulan-Ude. 188 p. (In Russian)
  32. [Handbook of the climate of the USSR. 1968. Iss. 22. Irkutsk Region and the western part of the Buryat ASSR. Part 4. Air humidity, atmospheric precipitation, snow cover]. Moscow. 279 p. (In Russian)
  33. [Handbook of the climate of the USSR. 1969. Iss. 20. Tomsk, Novosibirsk, Kemerovo Regions and Altai Krai. Part 4. Air humidity, atmospheric precipitation and snow cover]. Moscow. 332 p. (In Russian)
  34. Kiseleva A.P., Dneprovsky Yu.M. 1977. [Characteristics of meteorological conditions of the introduction area (Novosibirsk) in 1971–1975]. – In: [Ornamental plants and their introduction to Western Siberia.] Novosibirsk. P. 192–201. (In Russian)]
  35. Pimenov M.G., Ostroumova T.A. 2012. Umbelliferae of Russia. Moscow. 477 p. (In Russian)
  36. Godin V.N., Arkhipova T.V. 2019. Seed production of Aegopodium podagraria (Apiaceae) in Mos cow region. – University proceedings. Volga region. Natural sciences. 3: 5–15. https://doi.org/10.21685/2307-9150-2019-3-1 (In Russian)
  37. Vaynagy I.V. 1974. On the method of studying seed productivity of plants. – Botanicheskii Zhurnal. 59(6): 826–831. (In Russian) http://en.arch.botjournal.ru/?t=articles&id=3906
  38. Tyurina E.V. 1984. To the method of determining the seed productivity of species of the family Apiaceae. – Rastitelnye resursy. 20(4): 572–577. (In Russian)
  39. Godin V.N., Arkhipova T.A. 2022. Seed set of Chaerophyllum aromaticum (Apiaceae) in Moscow region. – Flora and Vegetation of Asian Russia. 15(1): 59–67. https://doi.org/10.15372/RMAR20220104 (In Russian)
  40. Levina R.E. 1987 [Morphology and ecology of fruits]. Leningrad. 160 p.
  41. Elisafenko Т.V. 2012. Investigations of features of the latent period of plant by the example of section Mirabilis of the genus Viola (Violaceae). I. The seed production and the biology of seed germination. – Flora and Vegetation of Asian Russia. 10(2): 66–72. (In Russian) https://elibrary.ru/item.asp?id=48198887
  42. Lakin G.F. 1973. [Biometriya]. Moscow. 342 p. (In Russian)
  43. Godin V.N., Perkova T.V. 2017. Flowering biology and sexual polymorphism in the Apiaceae species (Moscow region). – Botanicheskii Zhurnal. 102(1): 35–47. (In Russian) https://doi.org/10.1134/S0006813617010033
  44. Sheng S.H., Chen H.M. 1990. Plant regeneration from protoplasts of suspension cells of Saposhnikovia divaricata (Turcz.) Schischk. – Acta Bot. Sin. 32(4): 268–273. https://www.jipb.net/EN/abstract/abstract26752.shtml
  45. Oparina S.N. 2011. Comparative morphological and ecological analysis of the generative hederodiasporia have Falcaria vulgaris Bernh. (Umbelliferae). – [Samara Luka: problemy regionalnoy i globalnoy ecologii]. 20(3): 129–137. (In Russian)
  46. Zhou Y., Zhao M., Zhao Y. 2009. Seed dormancy mechanism of Saposhnikovia divaricate. – J. Northeast Forestry University. 37(3): 16–17. https://doi.org/10.3969/j.issn.1000-5382.2009.03.007
  47. Dou T., Wang Y., Zhang L., Zuo Q., Zhang X. 2010. Experimental study on promoting the germination of Fangfeng seeds in the alpine and semi-arid area of Bashang plateau. – Seed. 2: 66–68. https://doi.org/10.16590/j.cnki.1001-4705.2010.02.061
  48. Stupina L.A., Chernetsova N.V. 2018. Germination of introduced seeds of medicinal plants in the moderately arid steppe of Altai Krai. – In: [Agrarian Science for Agriculture: Proc. of the XIII Int. Res. and Pract. Conf.]. V. 1. Barnaul. P. 424–425. (In Russian) https://elibrary.ru/item.asp?id=32702587&pff=1

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (150KB)
4.

Baixar (219KB)

Declaração de direitos autorais © Т.В. Елисафенко, П.Н. Югрина, Б.М. Жигмитцыренова, М.В. Казаков, В.В. Тараскин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies