Chemical Composition and Therapeutic Effects of Some Astragalus (Fabaceae) Species

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstract—The review integrates information on the studies of component composition and biological activity of some Astragalus L. (Fabaceae) species published over the last 5–7 years. The aerial and underground parts of 34 Astragalus species contain triterpene saponins, flavonoids, polisaccharides, tannins, free organic acids, higher fatty acids, vitamins, trace elements, and other constituents. Among Astragalus species, the best studied in relation to component composition and biological activity is A. membranaceus (Fisch.) Bunge. In vitro and in vivo experimental studies suggest that total amount of bioactive substances, fractions of and individual compounds extracted from different parsts of A. membranaceus and A. membranaceus var. mongholicus exhibit anti-inflammatory, immunomodulatory, antioxidant, anticancer, cardiportactive, and hepathoprotective activity. The composition and biological effects of other Astragalus species have been little studied. The review synthesizes recent advances in the studies of new compounds extracted from Astragalus species, and on their biological activity.

作者简介

N. Klichkhanov

Dagestan State University

编辑信件的主要联系方式.
Email: klich-khan@mail.ru
Russia, Makhachkala

M. Suleimanova

Dagestan State University

Email: klich-khan@mail.ru
Russia, Makhachkala

参考

  1. Rundel P.W., Huggins T.R., Prigge B.A., Rasoul Sharifi M. 2015. Rarity in Astragalus: a California perspective. – Aliso. 33(2): 111–120. https://doi.org/10.5642/aliso.20153302.04
  2. Durazzo A., Nazhand A., Lucarini M., Silva A.M., Souto S.B., Guerra F., Severino P., Zaccardelli M., Souto E.B., Santini A. 2021. Astragalus (Astragalus membranaceus Bunge): botanical, geographical, and historical aspects to pharmaceutical components and beneficial role. – Rend. Lincei Sci. Fis. Nat. 32(3): 625–642. https://doi.org/10.1007/s12210-021-01003-2
  3. Yang L.P., Shen J.G., Xu W.C., Li J., Jiang J.Q. 2013. Secondary metabolites of the genus Astragalus: structure and biolog-ical activity update. – Chem. Biodivers. 10(6): 1004–1054. https://doi.org/10.1002/cbdv.201100444
  4. Guo Z., Lou Y., Kong M., Luo Q., Liu Z., Wu J. 2019. A systematic review of phytochemistry, pharmacology and pharmacokinetics on Astragali radix: Implications for Astragali radix as a personalized medicine. – Int. J. Mol. Sci. 20(6): 1463. https://doi.org/10.3390/ijms20061463
  5. Zhang Ch., Yang X., Wei J.R., Chen N.M.H., Xu J.P., Bi Y.Q., Yang M., Gong X., Li Z.Y., Ren K., Han Q.H., Zhang L., Li X., Ji M.Y., Wang C.C., Li M.H. 2021. Ethnopharmacology, phytochemistry, pharmacology, toxicology and clinical applications of Radix Astragali. – Chin. J. Integr. Med. 27: 229–240. https://doi.org/10.1007/s11655-019-3032-8
  6. Ionkova I., Shkondrov A., Zarev Y., Kozuharova E., Krasteva I. 2022. Anticancer secondary metabolites: from ethnopharmacology and identification in native complexes to biotechnological studies in species of genus Astragalus L. and Gloriosa L. – Curr. Issues Mol. Biol. 44(9): 3884–3904. https://doi.org/10.3390/cimb44090267
  7. Berezutskii M.A., Yakubova L.R., Durnova N.A., Romanteyeva Yu.V., Belonogova Yu.V., Komarova E.E., Sheremet’eva A.S. 2020. Drugs based on Astragalus extract and their pharmacological properties (review). – Khimiko-Farmatsevticheskii Zhurnal. 54(4): 20–25. (In Russian) https://doi.org/10.30906/0023-1134-2020-54-4-20-25
  8. Pozdnyakova T.A., Bubenchikov R.A. 2017. Astragalus glycyphyllus. Fatty and organic acids. – Permskij medicinskij zhurnal. 34(1): 90–94. (In Russian) https://www.elibrary.ru/item.asp?id=28435439
  9. Sergaliyeva M.U., Barskova N.A. 2017. Astragalus vulpinus Willd. is a source of biologically active agents. – Astrakhan Medical Journal. 12(1): 56–63. (In Russian) https://elibrary.ru/item.asp?id=29841822
  10. Bogatyreva Z.N. 2014. Prospects of use of the grass of Astragal serpoplodny in medicine. – Fundamental research. (12–10): 2154–2156. (In Russian) https://elibrary.ru/item.asp?id=22940466
  11. Pozdnyakova T.A., Bubenchikov R.A. 2021. [Evaluation of the concentration of tannies in the herb of Astragalus cicer]. – Cardiovascular Therapy and Prevention (Russian). 20(S1): 70. (In Russian) https://elibrary.ru/item.asp?id=45556855
  12. Shur Ju.V., Laciy E.S., Grechukhina M.I., Samotrueva M.A. 2017. Comparative analysis of the content of substitute substances in the ferries of Astragalus physocarpus and Astragalus dolichophyllus. – In: [Innovative development of modern science: problems, observations, prospects. Proc. IV Int. Sci. Conf. Part 1.]. Penza. P. 218–221. (In Russian) https://elibrary.ru/item.asp?id=30367395&pff=1
  13. Pozdnyakova T.A., Bubenchikov R.A. 2017. The study of elemental composition of the herb Astragalus albicaulis DC. – In: [Scientific forum: medicine, biology and chemistry. Proc. VI Sci. Conf.]. Moscow. V. 4(6). P. 55–60. (In Russian) https://elibrary.ru/item.asp?id=29837867&pff=1
  14. Matvienko Yu.A., Durnova N.A. 2021. [Antioxidant activity of promising wild species of the genus Astragalus L.] – In: [Free radicals, antioxidants and aging]. Astrakhan. P. 66–68. (In Russian)
  15. Shur Yu.V., Sal’nikova D.A. 2021. Macroscopic analysis and determination of the quantitative content of the sum of saponins in the herb of Astragalus dolichophyllus Pall. – Zametki Uchenogo. 7(1): 175–179. (In Russian) http://nauka-prioritet.ru/wp-content/uploads/2021/07/Июнь-2021-7-часть-1.pdf
  16. Akhadova D.A., Gejdarova A.E., Yasenyavskaya A.L., Sergalieva M.U. 2017. [The study of the content of biologically active substances in the herb Astragalus virgatus/varius]. – In: [Youth, Science, Medicine. Proc. 63-rd Students Sci. Conf.]. Tver. P. 626–629. https://elibrary.ru/item.asp?id=29812477&pff=1 (In Russian)
  17. Li Y., Guo S., Zhu Y., Yan H., Qian D.W., Wang H.Q., Yu J.Q., Duan J.A. 2019. Comparative analysis of twenty-five compounds in different parts of Astragalus membranaceus var. mongholicus and Astragalus membranaceus by UPLC-MS/MS. – J. Pharm. Anal. 9(6): 392–399. https://doi.org/10.1016/j.jpha.2019.06.002
  18. Ghasemian-Yadegari J., Hamedeyazdan S., Nazemiyeh H., Fathiazad F. 2019. Evaluation of phytochemical, antioxidant and antibacterial activity on Astragalus chrysostachys Boiss. roots. – Iran. J. Pharm. Res. 18(4): 1902–1911. https://doi.org/10.22037/ijpr.2019.1100855
  19. Li X., Qu L., Dong Y., Han L., Liu E., Fang S., Zhang Y., Wang T. 2014. A review of recent research progress on the Astragalus genus. – Molecules. 19(11): 18850–18880. https://doi.org/10.3390/molecules191118850
  20. Babich O., Prosekov A., Zaushintsena A., Sukhikh A., Dyshlyuk L., Ivanova S. 2019. Identification and quantification of phenolic compounds of Western Siberia Astragalus danicus in different regions. – Heliyon. 5(8): e02245. https://doi.org/10.1016/j.heliyon.2019.e02245
  21. Shishmareva T.M., Shishmarev V.M., Olennikov D.N. 2022. Chemical composition of Astragalus propinquus (Leguminosae) roots originated from Buryatia. – Khimija Rastitel’nogo Syr’ja. 4: 197–208. https://doi.org/10.14258/jcprm.20220411443 (In Russian)
  22. Vasilev H., Ross S., Šmejkal K., Maršík P., Jankovská D., Havlík J., Veselý O. 2019. Flavonoid glycosides from endemic Bulgarian Astragalus aitosensis (Ivanisch.). – Molecules. 24(7): 1419. https://doi.org/10.3390/molecules24071419
  23. Butkutė B., Dagilytė A., Benetis R., Padarauskas A., Cesevičienė J., Olšauskaitė V., Lemežienė N. 2018. Mineral and phytochemical profiles and antioxidant activity of herbal material from two temperate Astragalus species. – BioMed. Res. Int. Article ID 6318630, 11 p. https://doi.org/10.1155/2018/6318630
  24. Sarikurkcu C., Sahinler S.S., Tepe B. 2020. Astragalus gymnolobus, A. leporinus var. hirsutus, and A. onobrychis: phytochemical analysis and biological activity. – Ind. Crops Prod. 150: 112366. https://doi.org/10.1016/j.indcrop.2020.112366
  25. Kotsupiy O.V., Shemetova T.A., Petruk A.A. 2019. Flavonolglycoside of some siberian species of the section Xiphidium Bunge of the genus Astragalus. – Khimija Rastitel’nogo Syr’ja. 2: 67–72. (In Russian) https://doi.org/10.14258/jcprm.2019024263
  26. Hozhambergenova P. 2019. [Phytochemical investigations and prospects for the use of physiologically active substances of Astragalus chiwensis and Astragalus contortuplicatus in medical practice]. – Vestnik Nauki. 3(12/21): 224–230. (In Russian) https://elibrary.ru/item.asp?id=41487118
  27. Ogay M.A., Kovtun E.V., Chakhirova A.A., Samoryadova A.B., Bogatyreva Z.N. 2018. Development and investigation of phytoextracts containing flavonoids. – Research Result. Medicine and Pharmacy. 4(2): 90–103. (In Russian) https://doi.org/10.18413/2313-8955-2018-4-2-0-10
  28. Bazarnova N.A., Stupina L.A., Chernetsova N.V., Zakharchenko A.V. 2021. Phytochemical analysis of Astragalus mongholicus Bunge. cultivated in the Altai Ob River region. – In: [Scientific and innovative potential for the development of production, processing and the use of essential oils and medicinal plants]. Simferopol’. P. 40. (In Russian)
  29. Bi X.F., Pang J., Shi X.H., Shi H.S. 2017. Study on the Difference of Some Pharmacologically active ingredients in roots, stems and leaves of Astragalus mongholica. – J. Shanxi College of Tradit. Chin. Med. 18(1): 29–31, 34.
  30. Wang H., Liu A., Zhao W., Zhao H., Gong L., Chen E., Cui N., Ji X., Wang S., Jiang H. 2018. Metabolomics research reveals the mechanism of action of astragalus polysaccharide in rats with digestive system disorders. – Molecules. 23(12): 3333. https://doi.org/10.3390/molecules23123333
  31. Gao Y.F., Gao N. 2017. Research progress on physiological active components and pharmacological effects of Astragalus membranaceus. – New Agric. 1: 20–21. https://doi.org/10.3969/j.issn.1002-4298.2017.01.005
  32. Chen G.H., Huang W.F. 2008. Research Progress on chemical constituents and pharmacological effects of Astragalus membranaceus. – Chin. J. New Drugs. 17(17): 1482–1485. https://doi.org/10.3321/j.issn:1003-3734.2008.17.006
  33. Ai L.Z., Wu Y., Guo B.H., Wang M.Y. 2008. Research progress of astragalus polysaccharide. – Shandong Food Ferment. 1: 39–42.
  34. Liao J.Z., Li C.Y., Huang J., Liu W.P., Chen H.C., Liao S.Y., Chen H., Rui W. 2018. Structure characterization of honey-processed astragalus polysaccharides and its anti-inflammatory activity in vitro. – Molecules. 23(1): 168. https://doi.org/10.3390/molecules23010168
  35. Kiyohara H., Uchida T., Takakiwa M., Matsuzaki T., Hada N., Takeda T., Shibata T., Yamada H. 2010. Different contributions of side-chains in β-D-(1–>3,6)-galactans on intestinal Peyer’s patch-immunomodulation by polysaccharides from Astragalus mongholicus Bunge. – Phytochem. 71(2–3): 280–293. https://doi.org/10.1016/j.phytochem.2009.10.001
  36. Jin M., Zhao K., Huang Q., Shang P. 2013. Structural features and biological activities of the polysaccharides from Astragalus membranaceus. – Int. J. Biol. Macromol. 64: 257–266. https://doi.org/10.1016/j.ijbiomac.2013.12.002
  37. Sheng Z., Liu J., Yang B. 2021. Structure differences of water soluble polysaccharides in Astragalus membranaceus induced by origin and their bioactivity. – Foods. 10(8): 1755. https://doi.org/10.3390/foods10081755
  38. Azizov D.Z., Saburova A., Azizova D.Sh., Rahmanberdyeva R.K. 2019. Polysaccharides of the aerial part Astragalus babatagensis L. – Science Time. 2(62): 38–43. (In Russian) https://www.elibrary.ru/item.asp?id=37124064
  39. Jaradat N.A., Zaid A.N., Abuzant A., Khalaf S., Abu-Hassan N. 2017. Phytochemical and biological properties of four Astragalus species commonly used in traditional Palestinian medicine. – Eur. J. Integr. Med. 9: 1–8. https://doi.org/10.1016/j.eujim.2017.01.008
  40. Sergalieva M.U., Ahadova D.A. 2018. [Quantitative determination of free organic acids in Astragalus physodes herb]. – In: [Problems of effective use of the scientific potential. Proc. of Int. Sci. Conf.]. Part. 3. Sterlitamak. P. 136–138. (In Russian). https://www.elibrary.ru/item.asp?id=32167732&pff=1
  41. Peng Y., Deng X., Yang S.S., Nie W., Tang Y.D. 2023. Progress in mechanism of Astragalus membranaceus and its chemical constituents on multiple sclerosis. – Chinese J. Integ. Med. 29(1): 89–95. https://doi.org/10.1007/s11655-022-3535-6
  42. Turtueva T.A., Nikolaeva G.G., Gulyaev S.M., Zhalsanov Y.V. 2013. Amino acid composition of Astragalus membranaceus (Fish.) Bunge roots. – BSU bulletin. Medicine and pharmacy. 12: 75–77. (In Russian) http://journals.bsu.ru/content/pages/157/medicina._farmaciya._2013_12.pdf
  43. Samuel A.O., Huang B.T., Chen Y., Guo F.X., Yang D.D., Jin J.Q. 2021. Antioxidant and antibacterial insights into the leaves, leaf tea and medicinal roots from Astragalus membranaceus (Fisch.) Bge. – Sci. Rep. 11: 19625. https://doi.org/10.1038/s41598-021-97109-6
  44. Sergalieva M.U., Samotrueva M.A., Ahadova D.A. 2018. [The content of amino acids in the herb of Astragalus physodes]. – In: [Problems of the effective use of the scientific potential of society. Proc. of Int. Sci. Conf.]. Part 3. Sterlitamak. P 138–142. (In Russian) https://www.elibrary.ru/item.asp?id=32167744&pff=1
  45. Matvienko Yu.A., Durnova N.A., Karavaeva L.V., Romanteeva Y.V. 2021. The amino acid composition of the herb of some Astragalus L. species. – Pharmacy. 70(4): 20–25. (In Russian) https://doi.org/10.29296/25419218-2021-04-03
  46. Wang L., Xiong F., Yang L., Xiao Y., Zhou G. 2021. A seasonal change of active ingredients and mineral elements in root of Astragalus membranaceus in the Qinghai-Tibet Plateau. – Biol. Trace Elem. Res. 199(10): 3950–3959. https://doi.org/10.1007/s12011-020-02486-0
  47. Somer G., Çalişkan A.C. 2007. Selenium and trace element distribution in Astragalus plants: developing a differential pulse polarographic method for their determination. – Turk. J. Chem. 31(4): 411–422. https://journals.tubitak.gov.tr/chem/vol31/iss4/3/
  48. Lobanova I.E., Chankina O.V. 2012. Element composition of Astragalus glycyphyllos. – Khimija Rastitel’nogo Syr’ja. (2): 93–99. (In Russian) https://www.elibrary.ru/item.asp?id=18267702
  49. Zhang P., Liu X., Liu H., Wang W., Liu X., Li X., Wu X. 2018. Astragalus polysaccharides inhibit avian infectious bronchitis virus infection by regulating viral replication. – Microb. Pathog. 114: 124–128. https://doi.org/10.1016/j.micpath.2017.11.026
  50. Xue H., Gan F., Qian G., Hu J., Hao S., Xu J., Chen X., Huang K. 2017. Astragalus polysaccharides attenuate PCV2 infection by inhibiting endoplasmic reticulum stress in vivo and in vitro. – Sci. Rep. 7: 40440. https://doi.org/10.1038/srep40440
  51. Xue H. Gan F., Zhang Z., Hu J., Chen X., Huang K. 2015. Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway. – Int. J. Biol. Macromol. 81: 22–30. https://doi.org/10.1016/j.ijbiomac.2015.07.050
  52. Yang C.M., Han Q.J., Wang K.L., Xu Y.L., Lan J.H., Cao G.T. 2019. Astragalus and ginseng polysaccharides improve developmental, intestinal morphological, and immune functional characters of weaned piglets. – Front. Physiol. 10: 418. https://doi.org/10.3389/fphys.2019.00418
  53. Li K., Cao Y.X., Jiao S.M., Du G.H., Du Y.G., Qin X.M. 2020. Structural characterization and immune activity screening of polysaccharides with different molecular weights from Astragali radix. – Front. Pharmacol. 11: 582091. https://doi.org/10.3389/fphar.2020.582091
  54. Li Y., Hao N., Zou S., Meng T., Tao H., Ming P., Li M., Ding H., Li J., Feng S., Wang X., Wu J. 2018. Immune regulation of RAW264.7 cells in vitro by flavonoids from Astragalus complanatus via activating the NF-κB signalling pathway. – J. Immunol. Res. Article ID 7948068, 9 p. https://doi.org/10.1155/2018/7948068
  55. Sergalieva M.U., Murtalieva V.H., Samotrueva M.A. 2018. [The influence of Astragalus vulpinus extract on the phagocytic activity of blood neutrophils under “social” stress]. – In: [Harmonization of approaches to pharmaceutical development. Proc. of Int. Conf.]. Moscow. P. 180–183. (In Russian) https://www.elibrary.ru/item.asp?id=36909908
  56. Shur Y.V., Shur V.Y., Pustokhailov I.V. 2018. Studying immunotropic activity of extracts of Astragalus vulpinus in the aspect of “dose–effect”. – Astrakhan Medical J 13(4): 115–123. (In Russian) https://www.elibrary.ru/item.asp?id=37340896
  57. Tsibizova A.A., Sergalieva M.U., Murtalieva V.Kh., Bashkina O.A., Samotruyeva M.A. 2022. The immunotropic effect of Astragalus physodes extract under conditions of experimental depression. – Éksperimentalnaya i Klinicheskaya Farmakologiya. 85(12): 25–30. (In Russian) https://doi.org/10.30906/0869-2092-2022-85-12-25-30
  58. Wei W., Li Z.P., Bian Z.X., Han Q.B. 2019. Astragalus polysaccharide RAP induces macrophage phenotype polarization to M1 via the Notch signaling pathway. – Molecules. 24(10): 2016. https://doi.org/10.3390/molecules24102016
  59. Zhou L., Liu Z., Wang Z., Yu S., Long T., Zhou X., Bao Y. 2017. Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo. – Sci. Rep. 7: 44822. https://doi.org/10.1038/srep44822
  60. Chu Y., Fang Y., Chi J., Li J., Zhang D., Zou Y., Wang Z. 2018. Astragalus polysaccharides decrease proliferation, migration, and invasion but increase apoptosis of human osteosarcoma cells by up-regulation of microRNA-133a. – Braz. J. Med. Biol. Res. 51(12): e7665. https://doi.org/10.1590/1414-431X20187665
  61. Zhou Y., Hong T., Tong L., Liu W., Yang X., Luo J., Wang F., Jian Li J., Yan L. 2018. Astragalus polysaccharide combined with 10-hydroxycamptothecin inhibits metastasis in non-small cell lung carcinoma cell lines via the MAP4K3/mTOR signaling pathway. – Int. J. Mol. Med. 42(6): 3093–3104. https://doi.org/10.3892/ijmm.2018.3868
  62. Wu T.H., Yeh K.Y., Wang C.H., Wang H., Li T.L., Chan Y.L., Wu C.J. 2019. The combination of Astragalus membranaceus and Angelica sinensis inhibits lung cancer and cachexia through its immunomodulatory function. – J. Oncol. Article ID 9206951, 15 p. https://doi.org/10.1155/2019/9206951
  63. Zhou R., Chen H., Chen J., Chen X., Wen Y., Xu L. 2018. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. – BMC Complement. Altern. Med. 18: 83. https://doi.org/10.1186/s12906-018-2148-2
  64. Liu C., Li H., Wang K., Zhuang J., Chu F., Gao C., Liu L., Feng F., Zhou C., Zhang W., Sun C. 2019. Identifying the antiproliferative effect of Astragalus polysaccharides on breast cancer: Coupling network pharmacology with targetable screening from the cancer genome atlas. – Front. Oncol. 9: 368. https://doi.org/10.3389/fonc.2019.00368
  65. Jiang K., Lu Q., Li Q., Ji Y., Chen W., Xue X. 2017. Astragaloside IV inhibits breast cancer cell invasion by suppressing Vav3 mediated Rac1/MAPK signaling. – Int. Immunopharmacol. 42: 195–202. https://doi.org/10.1016/j.intimp.2016.10.001
  66. Graziani V., Esposito A., Scognamiglio M., Chambery A., Russo R., Ciardiello F., Troiani T., Potenza N., Fiorentino A., D’Abrosca B. 2019. Spectroscopic characterization and cytotoxicity assessment towards human colon cancer cell lines of acylated cycloartane glycosides from Astragalus boeticus L. – Molecules. 24(9): 1725. https://doi.org/10.3390/molecules24091725
  67. Zhang Y.M., Liu, Y.Q., Liu D., Zhang L., Qin J., Zhang Z., Su Y., Yan C., Luo Y.L., Li J., Xie X., Guan Q. 2019. The effects of Astragalus polysaccharide on bone marrow-derived mesenchymal stem cell proliferation and morphology induced by A549 lung cancer cells. – Med. Sci. Monit. 25: 4110–4121. https://doi.org/10.12659/MSM.914219
  68. Phacharapiyangkul N., Wu L.H., Lee W.Y., Kuo Y.H., Wu Y.J., Liou H.P., Tsai Y.E., Lee C.H. 2019. The extracts of Astragalus membranaceus enhance chemosensitivity and reduce tumor indoleamine 2,3-dioxygenase expression. – Int. J. Med. Sci. 16(8): 1107. https://doi.org/10.7150/ijms.33106
  69. Zhou Z., Meng M., Ni H. 2017. Chemosensitizing effect of Astragalus polysaccharides on nasopharyngeal carcinoma cells by inducing apoptosis and modulating expression of Bax/Bcl-2 ratio and caspases. – Med. Sci. Monit. 23: 462–469. https://doi.org/10.12659/msm.903170
  70. Li K., Li S., Wang D., Li X., Wu X., Liu X., Du G., Li X., Qin X., Du Y. 2019. Extraction, characterization, antitumor and immunological activities of hemicellulose polysaccharide from Astragalus radix herb residue. – Molecules. 24(20): 3644. https://doi.org/10.3390/molecules24203644
  71. Ou L., Wei P., Li M., Gao F. 2019. Inhibitory effect of Astragalus polysaccharide on osteoporosis in ovariectomized rats by regulating FoxO3a/Wnt signaling pathway. – Acta Cir. Bras. 34(05): e201900502. https://doi.org/10.1590/s0102-865020190050000002
  72. Chai Y., Pu X., Wu Y., Tian X., Li Q., Zeng F., Wang J., Gao J., Gong H., Chen Y. 2021. Inhibitory effect of Astragalus membranaceus on osteoporosis in SAMP6 mice by regulating vitaminD/FGF23/Klotho signaling pathway. – Bioengineered. 12(1): 4464–4474. https://doi.org/10.1080/21655979.2021.1946633
  73. Sun S., Yang S., Dai M., Jia X., Wang Q., Zhang Z., Mao Y. 2017. The effect of Astragalus polysaccharides on attenuation of diabetic cardiomyopathy through inhibiting the extrinsic and intrinsic apoptotic pathways in high glucose-stimulated H9C2 cells. – BMC Complement. Altern. Med. 17: 310. https://doi.org/10.1186/s12906-017-1828-7
  74. Chen W., Sun Q., Ju J., Chen W., Zhao X., Zhang Y., Yang Y. 2018. Effect of Astragalus polysaccharides on cardiac dysfunction in db/db mice with respect to oxidant stress. – BioMed. Res. Int. Article ID 8359013, 10 p. https://doi.org/10.1155/2018/8359013
  75. Mao Z.J., Lin M., Zhan X., Qin L. P. 2019. Combined use of astragalus polysaccharide and berberine attenuates insulin resistance in IR-HepG2 cells via regulation of the gluconeogenesis signaling pathway. – Front. Pharmacol. 10: 1508. https://doi.org/10.3389/fphar.2019.01508
  76. Zhai R., Jian G., Chen T., Xie L., Xue R., Gao C., Wang N., Xu Y., Gui D. 2019. Astragalus membranaceus and Panax notoginseng, the novel renoprotective compound, synergistically protect against podocyte injury in streptozotocin-induced diabetic rats. – J. Diabetes Res. Article ID 1602892, 14 p. https://doi.org/10.1155/2019/1602892
  77. Zhang R., Qin X., Zhang T., Li Q., Zhang J., Zhao J. 2018. Astragalus polysaccharide improves insulin sensitivity via AMPK activation in 3T3-L1 adipocytes. – Molecules. 23(10): 2711. https://doi.org/10.3390/molecules23102711
  78. Wei Z., Weng S., Wang L., Mao Z. 2018. Mechanism of Astragalus polysaccharides in attenuating insulin resistance in rats with type 2 diabetes mellitus via the regulation of liver microRNA-203a-3p. – Mol. Med. Rep. 17(1): 1617–1624. https://doi.org/10.3892/mmr.2017.8084
  79. Rawal S., Munasinghe P.E., Shindikar A., Paulin J., Cameron V., Manning P., Williams M.J., Jones G.T., Bunton R., Galvin I., Katare R. 2017. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. – Cardiovasc. Res. 113(1): 90–101. https://doi.org/10.1093/cvr/cvw235
  80. Meng X., Wei M., Wang D., Qu X., Zhang K., Zhang N., Li X. 2020. Astragalus polysaccharides protect renal function and affect the TGF-β/Smad signaling pathway in streptozotocin-induced diabetic rats. – J. Int. Med. Res. 48(5). https://doi.org/10.1177/0300060520903612
  81. Zhang G., Fang H., Li Y., Xu J., Zhang D., Sun Y., Zhou L., Zhang H. 2019. Neuroprotective effect of Astragalus polysacharin on streptozotocin (STZ)-induced diabetic rats. – Med. Sci. Monit. 25: 135–141. https://doi.org/10.12659/MSM.912213
  82. Pan R., Zhou M., Zhong Y., Xie J., Ling S., Tang X., Huang Y., Chen H. 2019. The combination of Astragalus membranaceus extract and ligustrazine to improve the inflammation in rats with thrombolytic cerebral ischemia. – Int. J. Immunopathol. Pharmacol. 33(8): 2058738419869055. https://doi.org/10.1177/2058738419869055
  83. Dou B., Li S., Wei L., Wang L., Zhu S., Wang Z., Ke Z., Chen K., Wang Z. 2021. Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition. – Front. Med. 15(1): 79–90. https://doi.org/10.1007/s11684-020-0783-8
  84. Du S.J., Zhang Y., Zhao Y.M., Dong Y.J., Tang J.L., Zhou X.H., Gao W.J. 2021. Astragaloside IV attenuates cerebral ischemia-reperfusion injury in rats through the inhibition of calcium‑sensing receptor‑mediated apoptosis. – Int. J. Mol. Med. 47(1): 302–314. https://doi.org/10.3892/ijmm.2020.4777
  85. Yu J., Ji H.Y., Liu A.J. 2018. Alcohol-soluble polysaccharide from Astragalus membranaceus: Preparation, characteristics and antitumor activity. – Int. J. Biol. Macromol. 118(B): 2057–2064. https://doi.org/10.1016/j.ijbiomac.2018.07.073
  86. Cui Y., Wang Q., Sun R., Guo L., Wang M., Jia J., Wu R. 2018. Astragalus membranaceus (Fisch.) Bunge repairs intestinal mucosal injury induced by LPS in mice. – BMC Complemen. Altern. Med. 18: 230. https://doi.org/10.1186/s12906-018-2298-2
  87. Adesso S., Russo R., Quaroni A., Autore G., Marzocco S. 2018. Astragalus membranaceus extract attenuates inflammation and oxidative stress in intestinal epithelial cells via NF-κB activation and Nrf2 response. – Int. J. Mol. Sci. 19(3): 800. https://doi.org/10.3390/ijms19030800
  88. Li S., Qi Y., Ren D., Qu D., Sun Y. 2020. The structure features and improving effects of polysaccharide from Astragalus membranaceus on antibiotic-associated diarrhea. – Antibiotics. 9(1): 8. https://doi.org/10.3390/antibiotics9010008
  89. Qiao H., Zhang L., Shi H., Song Y., Bian C. 2018. Astragalus affects fecal microbial composition of young hens as determined by 16S rRNA sequencing. – AMB Express. 8: 70. https://doi.org/10.1186/s13568-018-0600-9
  90. Wang H., Liu A., Zhao W., Zhao H., Gong L., Chen E., Cui N., Ji X., Wang S., Jiang H. 2018. Metabolomics research reveals the mechanism of action of Astragalus polysaccharide in rats with digestive system disorders. – Molecules. 23(12): 3333. https://doi.org/10.3390/molecules23123333
  91. Sal’nikova N.A., Shur Y.V., Tsibizova A.A., Konovalov D.A. 2019. Screening of antimicrobial activity of Astragalus vulpinus Willd. herb extract. – Astrakhan Medical J. 14(4): 52–60. (In Russian) https://elibrary.ru/item.asp?id=41863920
  92. Shur Yu.V., Parshina A.S. 2020. Pilot studies of antimicrobial properties of extraction of Astragal vulpinus from grass. – Zametki Uchenogo. 12: 124–126. (In Russian) http://nauka-prioritet.ru/wp-content/uploads/2021/01/Декабрь-2020-12.pdf
  93. Parshina A.S., Davgaeva D.Kh., Panina E.S., Shur Y.V. 2020. Antimicrobial activity study of Asragalus vulpinus extract from the grass in the in vitro experiment. – In: [Basic and applied scientific research: topical issues, achievements and innovations. Proc. XL Int. Sci. Conf.]. Penza. P. 291–293. (In Russian) https://elibrary.ru/item.asp?id=44454366&pff=1
  94. Guo L., Sun Y., Ping X., Liu J., Wang X., Qin N. 2022. Chemical composition and antibacterial activity of ethyl acetate extract of Astragalus membranaceus aerial parts. – J. Food Saf. 42(1): e12947. https://doi.org/10.1111/jfs.12947
  95. Platayeva A.K., Zavorotnaya M.V., Kustova T.S., Karpenyuk T.A., Goncharova A.V. 2017. Studying antibacterial and antioxidant activity of total plant extracts and complexes composed by them. – Vestnik of Kazakh National Unoversity. Biology. 2(71): 63–74. (In Russian) https://elibrary.ru/item.asp?id=35147934
  96. Sharifi-Rad M., Pohl P., Epifano F., Álvarez-Suarez J.M. 2020. Green synthesis of silver nanoparticles using Astragalus tribuloides Delile. root extract: Characterization, antioxidant, antibacterial, and anti-inflammatory activities. – Nanomaterials 10(12): 2383. https://doi.org/10.3390/nano10122383
  97. Khan F.U., Khan Z.U.H., Ma J., Khan A.U., Sohail M., Chen Y., Yang Y., Pan X. 2021. An Astragalus membranaceus based eco-friendly biomimetic synthesis approach of ZnO nanoflowers with an excellent antibacterial, antioxidant and electrochemical sensing effect. – Mater. Sci. Eng. C. 118: 111432. https://doi.org/10.1016/j.msec.2020.111432
  98. Matvienko U.A., Khodakova N.G., Durnova N.A. 2022. Screening of antimicrobial activity of water and hydro-alcoholic extracts from the herb of four species of Astragalus L. – Traditional medicine. 1(67): 51–55. (In Russian) https://doi.org/10.54296/18186173_2022_1_51
  99. Berezutsky M.A., Durnova N.A., Vlasova I.A. 2020. Experimental and clinical studies of mechanisms of the antiaging effects of chemical compounds in Astragalus membranaceus (Review). – Adv. Gerontol. 10(2): 142–149. https://doi.org/10.1134/S2079057020020046
  100. Guinobert I., Blondeau C., Colicchio B., Oudrhiri N., Dieterlen A., Jeandidier E., Deschenes G., Bardot V., Cotte C., Ripoche I., Carde P., Berthomier L., M’Kacher R. 2020. The use of natural agents to counteract telomere shortening: effects of a multi-component extract of Astragalus mongholicus Bunge and danazol. – Biomedicines. 8(2): 31. https://doi.org/10.3390/biomedicines8020031
  101. Enukashvily N.I., Skazina M.A., Chubar A.V., Mashutin A.B. 2020. The effect of the geroprotectors astragaloside IV, cycloastragenol, and Timovial–Epivial peptide complex on telomere length and telomerase activity in human mesenchymal stromal cells and senescent fibroblasts. – Cell Tissue Biol. 14(2). 83–90. https://doi.org/10.1134/S1990519X20020030
  102. Selim A.M., Nooh M.M., El-Sawalhi M.M., Ismail N.A. 2020. Amelioration of age-related alterations in rat liver: Effects of curcumin C3 complex, Astragalus membranaceus and blueberry. – Exp. Gerontol. 137: 110982. https://doi.org/10.1016/j.exger.2020.110982
  103. Yang F., Xiu M., Yang S., Li X., Tuo W., Su Y., Liu Y. 2021. Extension of Drosophila lifespan by Astragalus polysaccharide through a mechanism dependent on antioxidant and insulin/IGF-1 signaling. – Evid. Based Complementary Altern. Med. Article ID 6686748, 12 p. https://doi.org/10.1155/2021/6686748
  104. Zhang J., Qiao Y., Li D., Hao S., Zhang F., Zhang X., Li A., Qin X. 2022. Aqueous extract from Astragalus membranaceus can improve the function degradation and delay aging on Drosophila melanogaster through antioxidant mechanism. – Rejuvenation Res. 25(4): 181–190. https://doi.org/10.1089/rej.2021.0081

版权所有 © Н.К. Кличханов, М.Н. Сулейманова, 2023
##common.cookie##