Spin magnetoresistance of thin film structures of manganite and material with strong spin-orbit interaction.

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of the experimental determination of the spin Hall angle in a two-layer metal/ferromagnet structure Pt/La_0.7 Sr_0.3 MnO_3, obtained from the angular dependences of the longitudinal and transverse spin magnetoresistance in the planar Hall effect configuration are presented. The spin Hall angle determined from the longitudinal magnetoresistance was θ_Hx ≈ 0.016, and from transverse θ_Hy ≈ 0.018, while for SrIrO_3/La_0.7 Sr_0.3 MnO_3 heterostructures the ratio of the transverse to longitudinal spin Hall angle turned out to be significantly higher, θ_Hy/θ_Hx ≈ 9, which is most likely caused by the formation of a layer with high conductivity at the SrIrO_3 boundary /La_0.7 Sr_0.3 MnO_3. 

作者简介

G. Ul'ev

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; National Research University Higher School of Economics

Email: gdulev@edu.hse.ru
Moscow, 125009 Russia; Moscow, 101000, Russia

K. Constantinian

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: gdulev@edu.hse.ru
Moscow, 125009 Russia

Y. Moskal'

National Research University Higher School of Economics

Email: gdulev@edu.hse.ru
Moscow, 101000, Russia

G. Ovsyannikov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: gdulev@edu.hse.ru
Moscow, 125009 Russia

A. Shadrin

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences;

编辑信件的主要联系方式.
Email: gdulev@edu.hse.ru
Moscow, 125009 Russia; Dolgoprudnyi, Moscow oblast, 141701 Russia

参考

  1. Hirsch J.E. // Phys. Rev. Lett. 1999. V. 83. № 9. P. 1834.
  2. Zhang S.F. // Phys. Rev. Lett. 2000. V. 85. № 2. P. 393.
  3. Miron I.M., Garello K., Gaudin G. et al. // Nature. 2011. V. 476. P. 189.
  4. Jungwirth T., Wunderlich J., Olejn K. et al. // Nat. Mater. 2012. V. 11. P. 382.
  5. Sinova J., Valenzuela S.O., Wunderlich J. et al. // Rev. Mod. Phys. 2015. V. 87. P. 1213.
  6. Chen Y.-T., Takahashi S., Nakayama H. et al. // J. Phys.: Condens. Matt. 2016. V. 28. № 10. Article No. 103004.
  7. Saitoh E., Ueda M., Miyajima H., Tatara S. // Appl. Phys. Let. 2006. V. 88. № 18. Article No. 182509.
  8. Константинян К.И., Овсянников Г.А., Шадрин А.В. и др. // ФТТ. 2022. Т. 64. № 10. С. 1429.
  9. Huang X., Sayed S., Mittelstaedt J. et al. // Adv. Mater. 2021. V. 33. Article No. 2008269.
  10. Yoo M.-W., Tornos J., Sander A. et al. // Nature Comm. 2021. V. 12. P. 3283.
  11. Perna P., Maccariello D., Ajejas F. et al. //Adv. Funct. Mater. 2017. V. 27. № 17. Article No. 1700664.
  12. Ovsyannikov G.A., Shaikhulov T.A., Stankevich K.L. et al. // Phys. Rev. B 2020. V. 102. № 14. Article No. 144401.
  13. Lee H.K., Barsukov I., Swartz A.G. et al. // AIP Advances. 2016. V. 6. № 5. Article No. 055212.
  14. Овсянников Г.А., Константинян К.И, Калачев Е.А., Климов А.А. // Письма в ЖТФ. 2022. Т. 48. № 12. С. 44.
  15. Tserkovnyak Ya., Brataas A., Bauer G.E.W. // Phys. Rev. Lett. 2002. V. 88. № 11. Article No. 117601.
  16. Dubowik J., Graczyk P., Krysztofik A. et al. // Phys. Rev. Appl. 2020. V. 13. № 5. Article No. 054011.
  17. Wang Y., Deorani P., Qiu X. et al. // Appl. Phys. Lett. 2014. V. 105. № 15. Article No. 152412.
  18. Nan T., Anderson T.J., Gibbons J. et al. // Proc. Nat. Acad. Sci. USA. 2019. V. 116. P. 6186.
  19. Marmion S.R., Ali M., McLaren M. et al. // Phys. Rev. B. 2014. V. 89. № 22. Article No. 220404(R).
  20. Константинян К.И., Ульев Г.Д., Овсянников Г.А. и др. // Труды XXVII Междунар. cимп. “Нанофизика и наноэлектроника”. Н. Новгород: ИПФ РАН, 2023. Т. 1. С. 221.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (368KB)
3.

下载 (73KB)
4.

下载 (43KB)
5.

下载 (186KB)
6.

下载 (233KB)
7.

下载 (117KB)

版权所有 © Г.Д. Ульев, К.И. Константинян, И.Е. Москаль, Г.А. Овсянников, А.В. Шадрин, 2023

##common.cookie##