Magnetic and Magnetocaloric Characteristics of the Mn1.9Cu0.1Sb Alloy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The magnetic and magnetocaloric characteristics of the Mn1.9Cu0.1Sb alloy were studied. The presence of a relatively sharp decrease in the magnetization in the region of 100 K is established, which, according to ab initio calculations, can be interpreted as antiferromagnetism–ferrimagnetism transitions. The presence of a magnetic phase transition from a ferrimagnetic to an antiferromagnetic state (F ↔ AF) leads to the appearance of an inverse magnetocaloric effect, which is preserved in magnetic fields up to 10 T.

作者简介

V. Mitsiuk

Scientific and Practical Center, National Academy of Sciences of Belarus for Materials Science

Email: mitsiuk@physics.by
Minsk, 220072 Belarus

A. Gurbanovich

Scientific and Practical Center, National Academy of Sciences of Belarus for Materials Science

Email: mitsiuk@physics.by
Minsk, 220072 Belarus

An. Gurbanovich

Scientific and Practical Center, National Academy of Sciences of Belarus for Materials Science

Email: mitsiuk@physics.by
Minsk, 220072 Belarus

T. Tkachenko

Belarusian State Agrarian Technical University

Email: mitsiuk@physics.by
Minsk, 220012 Belarus

V. Valkov

Galkin Donetsk Institute of Physics and Technology

Email: mitsiuk@physics.by
Donetsk, 283050 Russia

A. Golovchan

Galkin Donetsk Institute of Physics and Technology

Email: mitsiuk@physics.by
Donetsk, 283050 Russia

A. Mashirov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: mitsiuk@physics.by
Moscow, 125009 Russia

Z. Surowiec

Joint Institute for Nuclear Research; Institute of Physics, University Maria Curie-Sklodowska

编辑信件的主要联系方式.
Email: mitsiuk@physics.by
Moscow oblast, Dubna, 141980 Russia; Lublin, 20-031 Poland

参考

  1. Shen Q., Batashev I., Zhang F. et al. // J. Alloys Compound. 2021. V. 866. Article No. 158963. https://doi.org/10.1016/j.jallcom.2021.158963
  2. Zhang H., Gimaev R., Kovalev B. et al. // Physica B: Cond.Matt. 2019. V. 558. P. 65. https://doi.org/10.1016/j.physb.2019.01.035
  3. Рыжковский В.М. // Металлы. 2001. № 3. С. 59.
  4. Zhang Y.Q., Zhang Z.D., Xiong D.K. et al. // J. Appl. Phys. 2003. V. 94. № 7. P. 4726. https://doi.org/10.1063/1.1608468
  5. Matsumoto Y., Orihashi H., Matsubayashi K. et al. // IEEE Trans. 2014. V. MAG-50. № 1. Pt. 1. Article No. 1000704. https://doi.org/10.1109/TMAG.2013.2279536
  6. Matsumoto Y., Matsubayashi K., Uwatoko Y. et al. // AIP Conf. Proc. 2015. V. 1763. № 2. P. 020005. https://doi.org/10.1063/1.4961338
  7. Pankratov N.Yu., Mitsiuk V.I., Ryzhkovskii V.M., Nikitin S.A. // J.Magn.Magn.Mater. 2019. V. 470. P. 46. https://doi.org/10.1016/j.jmmm.2018.06.035
  8. Wolf J.D., Hanlon J.E. // J. Appl. Phys. 1961. V. 32. № 12. P. 2584. https://doi.org/10.1063/1.1728358
  9. Митюк В.И., Римский Г.С., Коледов В.В. и др. // ФТТ. 2021. Т.63. № 12. С. 2082.
  10. Ebert H., Kodderitzsch D., Minar J. Munich SPRKKR package, version 8.6. 41 p. München: Ludwig-Maximilians Universität, 2010 https://www.ebert.cup.uni-muenchen.de/sprkkr.
  11. Ebert H., Kodderitzsch D., Minar J. // Rep. Prog. Phys. 2011. V. 74. № 9. Article No. 096501.
  12. Vosko S.H., Wilk L. // Phys. Rev. B. 1980. V. 22. № 8. P. 3812. https://doi.org/10.1103/PhysRevB.22.3812
  13. Liechtenstein A.I., Katsnelson M.I., Antropov V.P., Gubanov V.A. // J. Magn. Magn. Mater. 1987. V. 67. P. 65. https://doi.org/10.1016/0304-8853(87)90721-9
  14. Вальков В.И., Головчан А.В. // ФНТ. 2008. Т. 34. № 1. С. 53.
  15. Королев К.А., Сиваченко А.П., Грибанов И.Ф. и др. // Челябинский физ.-мат. журн. 2020. Т. 5. № 4. С. 569. https://doi.org/10.47475/2500-0101-2020-15416
  16. Рыжковский В.М., Глазков В.П., Гончаров В.С. и др. // ФТТ. 2002. Т. 44. № 12. С. 2178.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (83KB)
3.

下载 (92KB)
4.

下载 (155KB)
5.

下载 (101KB)
6.

下载 (144KB)
7.

下载 (84KB)

版权所有 © В.И. Митюк, А.В. Гурбанович, А.В. Гурбанович, Т.М. Ткаченко, В.И. Вальков, А.В. Головчан, А.В. Маширов, З. Суровец, 2023

##common.cookie##