Flow of high-energy positive oxygen ions from plasma onto the substrate in a pulsed magnetron discharge with a hot target.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A group of high-energy positive O^+ ions was detected in a plasma flow
high-current pulsed magnetron discharge with a hot target in an Ar/O_2 gas mixture. The mechanism for the formation of accelerated O^+ ions may be the conversion of accelerated ones in the cathode layer of negative ions O^– → O^+ in the processes of charge exchange or ionization by electron impact.

About the authors

D. V. Kolodko

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch; National Research Nuclear University Moscow Engineering Physics Institute; P.N. Lebedev Physical Institute Russian Academy of Sciences

Email: dobrynya_kol@mail.ru
Fryazino, Moscow oblast, 141190 Russia; Moscow, 115409 Russia; Moscow, 119991, Russia

A. V. Kaziev

National Research Nuclear University Moscow Engineering Physics Institute

Email: dobrynya_kol@mail.ru
Moscow, 115409 Russia

D. G. Ageichenkov

National Research Nuclear University Moscow Engineering Physics Institute

Email: dobrynya_kol@mail.ru
Moscow, 115409 Russia

V. Yu. Lisenkov

National Research Nuclear University Moscow Engineering Physics Institute

Author for correspondence.
Email: dobrynya_kol@mail.ru
Moscow, 115409 Russia

References

  1. Handbook of Thin Film Deposition / Eds K. Seshan, D. Schepis. 4th ed. Amsterdam: Elsevier, 2018.
  2. Mattox D.M. Handbook of Physical Vapor Deposition (PVD) Processing. Amsterdam: Elsevier, 2010.
  3. Aghda S.K., Holzapfel D.M., Music D. et al. // Acta Mater. 2023. V. 250. P. 118864.
  4. Greczynski G., Petrov I., Greene J.E. et al. // J. Vac. Sci. Technol. Amer. Vacuum Soc. 2019. V. 37. № 6. P. 060801.
  5. Ellmer K., Welzel T. // J. Mater. Res. 2012. V. 27. № 5. P. 765.
  6. Welzel T., Ellmer K. // Vak. Forsch. Prax. 2013. V. 25. № 2. P. 52.
  7. Kaziev A.V., Kolodko D.V., Tumarkin A.V. et al. // Surf. Coatings Technol. 2021. V. 409. P. 126889.
  8. Tumarkin A.V., Kaziev A.V., Kharkov M.M. et al. // Surf. Coatings Technol. 2016. V. 293. P. 42.
  9. Kolodko D.V., Ageychenkov D.G., Kaziev A.V. et al. // J. Instrum. 2019. V. 14. № 10. P. P10005.
  10. Kolodko D.V., Kaziev A.V., Tumarkin A.V. // 8th Int. Congress on Energy Fluxes and Radiation Effects. Tomsk. 2–8 Oct., 2022. Tomsk: TPU Publishing House, 2022. P. 1028.
  11. Hippler R., Cada M., Stranak V. et al. // J. Phys. Commun., 2019. V. 3. № 5. P. 055011.
  12. Hippler R., Cada M., Stranak V. et al. // J. Appl. Phys. 2019. V. 125. № 1. P. 013301.
  13. Pokorný P., Bulíř J., Lančok J. et al. // Plasma Process. Polym. 2010. V. 7. № 11. P. 910.
  14. Pokorný P., Musil J., Lančok J. et al. // Vacuum. 2017. V. 143. P. 438.
  15. Hippler R., Denker C. // Plasma Sources Sci. Technol. 2019. V. 28. № 3. P. 035008.
  16. Pokorný P., Mišina M., Bulíř J. et al. // Plasma Process. Polym. 2011. V. 8. № 5. P. 459.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (60KB)

Copyright (c) 2023 Д.В. Колодко, А.В. Казиев, Д.Г. Агейченков, В.Ю. Лисенков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies