The influence of nonlinearity on a singular point in a system of coupled Duffing oscillators

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of nonlinearity on the displacement of a singular point in a system of two connected Duffing oscillators when coupling coefficients and insertion losses change. It is shown that the displacement of the singular point when the nonlinearity coefficient changes is accompanied by a decrease in the amplitude of the excited oscillations and a shift in the resonant frequency. The threshold values of the nonlinearity, coupling, and insertion loss coefficients at which a singular point occurs are numerically found. It is shown that an increase in the nonlinearity coefficient leads to a decrease in the threshold value of the insertion losses required for the formation of a singular point.

About the authors

O. S. Temnaya

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: ostemnaya@gmail.com
Moscow, 125009 Russia

A. R. Safin

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; Moscow Power Engineering Institute (National research University)

Email: ostemnaya@gmail.com
Moscow, 125009 Russia; Moscow, 111250, Russia

O. V. Kravchenko

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS

Email: ostemnaya@gmail.com
Moscow, 125009 Russia; Moscow,119333, Russia

S. A. Nikitov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS; Saratov State University (National research University

Author for correspondence.
Email: ostemnaya@gmail.com
Moscow, 125009 Russia; Dolgoprudnyi, Moscow oblast, 141701 Russia; Saratov, 410012, Russia

References

  1. Kato T. A Short Introduction to Perturbation Theory for Linear Operators. N.Y.: Springer., 2011. https://doi.org/10.1007/978-1-4612-5700-4
  2. Wiersig J. // Photon. Res. 2020. V. 8. № 9. P. 1457. https://doi.org/10.1364/PRJ.396115
  3. Weidong C., Wang C., Chen W. et al. // Nat. Nanotech. 2022. V. 17. Article No. 262268. https://doi.org/10.1038/s41565-021-01038-4
  4. Зябловский А.А., Виноградов А.П., Пухов А.А. и др. // Успехи физ. наук. 2014. Т. 184. № 11. С. 1177. https://doi.org/10.3367/UFNr.0184.201411b.1177
  5. Rüter C., Makris K., El-Ganainy R. // Nat. Phys. 2010. V. 6. Article No. 192195. https://doi.org/10.1038/nphys1515
  6. Вилков Е.A., Бышевский-Конопко О.А., Темная О.С. и др. // Письма в ЖТФ. 2022. Т. 48. № 24. С. 38. https://doi.org/10.21883/PJTF.2022.24.54023.19291
  7. Zhu X., Ramezani H., Shi C. et al. // Phys. Rev. X 2014. V. 4. Article No. 031042. https://doi.org/10.1103/PhysRevX.4.031042
  8. Wittrock S., Perna S., Lebrun R. et al. // arXiv: 2108.04804.
  9. Liu H., Sun D., Zhang C. et al. // Sci. Adv. 2019. V. 5. № 11. Article No. aax9144. https://doi.org/10.1126/sciadv.aax9144
  10. Temnaya O.S., Safin A.R., Kalyabin D.V., Nikitov S.A. // Phys. Rev. Appl. 2022. V. 18. Article No. 014003. https://doi.org/10.1103/PhysRevApplied.18.014003
  11. Sadovnikov A.V., Zyablovsky A.A., Dorofeenko A.V., Nikitov S.A. // Phys. Rev. Appl. 2022. V. 18. Article No. 024073. https://doi.org/10.1103/PhysRevApplied.18.024073
  12. Rajasekar S., Sanjuan M. Nonlinear Resonances. Cham: Springer, 2015.
  13. Рабинович И.М., Трубецков Д.И. Введение в теорию колебаний и волн. Ижевск: НИЦ РХД, 2000.
  14. Moon K.-W., Chun B.S., Kim W. et al. // Sci. Reports. 2014. V. 4. Article No. 6170.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (168KB)
3.

Download (84KB)
4.

Download (234KB)

Copyright (c) 2023 О.С. Темная, А.Р. Сафин, О.В. Кравченко, С.А. Никитов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies